



# 2023 Partners in Progress Peanut Report

## Partners in Progress Peanut Report

2023 Edition

by

### **DAVID NOWLIN**

Executive Director, Oklahoma Peanut Commission

### **KELLY CHAMBERLIN**

Research Biologist, Peanut Geneticist, USDA-Agricultural Research Service

### **MAIRA DUFFECK**

Assistant Professor, Entomology and Plant Pathology

### **REBECCA BENNETT**

Research Plant Pathologist, USDA-Agricultural Research Service

### **TODD BAUGHMAN**

Research Professor, Plant and Soil Sciences

### **Oklahoma State University**

# **Table of Contents**



| 2023 Disease Evaluations and Agronomic Traits of Advanced Peanut Breeding Lines | 4  |
|---------------------------------------------------------------------------------|----|
| 2023 Peanut Weed Management Report                                              | 14 |
| 2023 Oklahoma Peanut Variety Trials                                             | 22 |
| Evaluation of Foliar Fungicides for Control of Early Leaf Spot in Oklahoma 2023 | 37 |



## 2023 Disease Evaluations and Agronomic Traits of Advanced Peanut Breeding Lines

Rebecca S. Bennett and Kelly D. Chamberlin, USDA-Agricultural Research Service Maira R. Duffeck, OSU Department of Entomology and Plant Pathology

### **Overview**

- A total of 28 breeding lines and reference cultivars were evaluated at the Caddo Research Station for agronomic characteristics and soilborne diseases (Sclerotinia blight and pod rot).
- The six-entry runner trial included Lariat, FloRun '107', Southwest Runner, ACI 509, IPG517and one USDA-ARS breeding line. The 14-entry Spanish/Valencia trial tested four Spanish and one small-seeded runner breeding line from USDA-ARS, six Valencia breeding lines from New Mexico State University, and cultivars IPG 1288, OLé, and TAMVal OL14. The Virginia trial evaluated eight entries: Jupiter, Comrade, Bailey II, Emery and four breeding lines from USDA-ARS.
- The 28-entry disease trial was planted on June 21 and dug 136 days after planting (Nov. 3), accumulating 2,823 growing degree days (GDD) in Fahrenheit. The season was marked by above-average temperatures for August and September (both 3 degrees above the 15-year mean). Compared to the 15-year average for rainfall, June and July experienced more, while August and September had less. Moderate to moderately high levels of Sclerotinia blight were observed in the runner and Virginia genotypes, but little pod rot was observed in this trial. The field also had high levels of parasitic nematodes.
- Moderately low levels of pod rot were present in the Virginia pod rot nursery. Jupiter and the susceptible genotype PI 378012 had 21% and 28% pod rot, respectively.

A major goal of the ARS peanut research program in Stillwater is to develop and release high-oleic peanut cultivars for the Southwest with improved yield, disease resistance and seed characteristics. In 2023, we evaluated commercial and advanced breeding lines of runner, Spanish/Valencia and Virginia peanuts in small plots at Oklahoma State University's Caddo Research Station in Fort Cobb. The objectives of these field studies were:

- 1. To compare advanced breeding lines to commercially available cultivars for resistance to Sclerotinia blight and agronomic characteristics, such as yield, seed, and pod qualities.
- 2. To evaluate a selection of Virginia entries for pod rot resistance in a field where soilborne levels of the pathogens causing peanut pod rot were promoted by planting susceptible genotypes the previous year.

### Methods for Evaluating Advanced Breeding Lines and Cultivars

A total of 28 breeding lines and reference cultivars (6 runner, 14 Spanish/Valencia and 8 Virginia market types) were evaluated. Runner and Virginia peanut market types were each grown and evaluated separately, but Spanish and Valencia entries were combined in the same field and analyzed together. All advanced breeding lines were high oleic. Each entry was planted at a density of 5 seeds/ft in plots consisting of two 15-foot-long rows with 36-inch-wide beds. A randomized complete block design was used by dividing the field into four sections (blocks) to account for potential disease gradients and environmental variables. All plots were planted approximately one month later than normal (June 21) to ensure green foliage was available for late-season development of Sclerotinia blight. All plots were inverted on Nov. 3, 136 days after planting, and threshed on Nov. 6, 2023.

Additional water was applied to all plots 14 times (total 9.95") between June 30 and Oct. 4, using a center pivot system. Each row in the two-row plots was inoculated with 0.5 grams of *Sclerotinia minor* sclerotia on Sept. 12. Fields were managed for weeds, foliar diseases and southern blight (caused by *Agroathelia rolfsii*) following Extension recommendations but were not managed for Sclerotinia blight, pod rot or nematodes. Entries were evaluated for Sclerotinia on Oct. 13. Disease incidence was measured by counting the number of 6-inch sections within each plot that had symptoms of Sclerotinia blight. On Aug. 21 and Oct. 10, approximately 20 soil cores were collected near the taproots from the four plots planted with Jupiter for nematode counts. All plots were examined for pod rot on the same day the plants were inverted.

Peanut grades were determined following USDA-Agricultural Marketing Service guidelines, using two 200gram samples from each plot. Two 500-gram samples per plot were used to determine pod sizes in the Virginia entries. Yield was adjusted by factoring in the area lost by plots in the path of the center pivot wheels. Data were analyzed using one-way ANOVA in PROC GLIMMIX of SAS (ver. 9.4).

The Type I error rate for pairwise comparisons of breeding lines and cultivars was controlled at a = 0.05 using the ADJUST=TUKEY option. Crop value for each market type was calculated using the following 2023 contract prices per ton: \$650, runner; \$950, Valencia; \$700, Spanish; and \$725, Virginia.

The pod rot nursery was planted on June 21 to reduce the number of volunteers, and plots were dug and rated for pod rot on Oct. 17.

### Summary of 2023 Field Conditions

A total of 2,823 growing degree days in Fahrenheit accumulated for the 2023 disease trial. The season was characterized by above-average temperatures for August and September (+3F from 15-year mean), above-average rainfall for June and July, and below-average rainfall for August and September (Table 1). Cooler evening temperatures in October favored the development of Sclerotinia blight. Little southern blight and pod rot were observed. The nematology lab at Oklahoma State University found 331 ring and 20 root-knot nematodes per 100 cc (=3.4 oz.) of soil in the Aug. 21 samples. By Oct. 10, there was an average of 910 ring and 1,050 root-knot nematodes per 100 cc of soil (Kelli Black and Nathan Walker, pers. communication) – numbers considered to be very high levels of infestation for both nematodes.



### Performance of the Six Runner Market-type Entries

- Runner entries with the highest yield (≥4,584 lbs. per acre) and crop values (≥\$1,049 per acre) were Southwest Runner, ARSOK R109-1 and Lariat (Table 2). Average seed grade varied among entries from 61% to 72%.
- Moderately high levels of Sclerotinia blight were observed in mid-October, and the most resistant entries included Southwest Runner (<1%), Lariat (9%) and ARSOK R109-1 (12%).
- Three-year averages were calculated for four entries (Table 3), but plots from 2021 and 2022 were in the field 30 and 12 days longer, respectively, than in 2023. Lariat, Southwest Runner and ARSOK R109-1 had similar yields. Seed grade for Lariat was higher than FloRun '107' and Southwest Runner but not significantly different than R109-1. Southwest Runner had more resistance to Sclerotinia blight than FloRun '107' and R109-1 but was similar to Lariat in resistance.

### Performance of the 14 Spanish/Valencia Market-type Entries

- OLé and ARS small-seeded runner breeding line ARSOK R58B had the highest numerical yields (4,811 and 4,244 pounds per acre, respectively; Table 4). Yields among Valencia market-type entries were statistically similar.
- Crop value was highest for all Valencia market type entries except NM310 due to the higher contract price for Valencia. Within the Valencia entries, NM16-17 had the highest numerical yield (4,039 lbs/A), and IPG 1288 had the best grade at 72%.
- OLé had the highest yield of the entire Spanish/Valencia trial at 4,811 lbs/A. The small-seeded runner, AR-SOK R58B, was among the highest yielding (4,244 lbs/A) and had the best grade at 74%.
- Minimal Sclerotinia blight (<2%) was observed except in IPG 1288 which had 38% disease.
- OLé had the highest numerical yield among the seven entries evaluated for the past three years (Table 5). Few differences in seed grade were observed, and the entries had little Sclerotinia blight.

### Performance of the Nine Virginia Market-type Entries

- Among the Virginia entries, ARSOK V99 had the highest crop value (\$1,120/A; Table 6) and the highest numerical yield (4,537 lbs/A).
- Average seed grade was relatively low, ranging from 65% to 68% but did not differ significantly among entries. ARSOK entries V98, V99 and V103-1 had the lowest levels of Sclerotinia blight (<11%), while Emery was the most diseased (39%).
- Entries differed significantly in number of pods per ounce (Table 6) and pod size distribution (Figure 1). ARSOK V103-3 (81%) and Comrade (75%) had the largest percentage of super jumbo pods by weight.
- Over the past three years, ARSOK V99 had the highest numerical yield (4,400 lbs/A) and the least amount of Sclerotinia blight (6%; Table 7). Seed grade was highest in Comrade and ARSOK V99 (69 and 68%, respectively).

### **Pod Rot Nursery**

In 2023, moderately low levels of pod rot were observed in the pod rot nursery (Table 8). The susceptible control PI 378012 and Jupiter had above 20% pod rot. Comrade had intermediate levels of disease (11%), and all other entries had 5% or less pod rot.



### Acknowledgements

We thank Angie Harting, Lyndsey Aguirre, Kyren Bunyard, Amna Dar and Macy Koch at USDA-ARS, and Robert Weidenmaier, Harley Houston and Brennan Leighton at the Caddo Research Station for invaluable technical support. Kelli Black and Nathan Walker provided nematode counts. Seeds for several commercial lines were originally provided by Birdsong, Hampton Farms and the International Peanut Group. New Mexico State University breeder Naveen Puppala provided additional Valencia breeding lines.

This research is supported by USDA-ARS Current Research Information System (CRIS) Project No. 3072-21220-009-00D, the Oklahoma Peanut Commission, the National Peanut Board and OSU Ag Research. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.



Table 1. Monthly rainfall and average air temperature from Mesonet for 2023 field season at the Caddo Research Station in Fort Cobb.<sup>1</sup>

|                        |              | Air Temp    | perature (°F) | )                       | Rainfa    | ll (inches)             | Total               |  |
|------------------------|--------------|-------------|---------------|-------------------------|-----------|-------------------------|---------------------|--|
| Month                  | Avg.<br>Max. | Avg.<br>Low | Daily<br>Mean | Dep. 15-<br>Yearly Avg. | Total     | Dep. 15-<br>Yearly Avg. | Degree<br>Days (°F) |  |
| June                   | 88 (92)      | 66 (71)     | 77 (81)       | -3                      | 6.7 (2.0) | +3.05                   | 354 (166)           |  |
| July <sup>2</sup>      | 93           | 70          | 81            | -1                      | 5.2       | +2.23                   | 514                 |  |
| August <sup>2</sup>    | 96           | 69          | 82            | +33                     | 0.6       | -1.98                   | 471                 |  |
| September <sup>2</sup> | 89           | 64          | 76            | +3                      | 1.5       | -1.36                   | 307                 |  |
| October                | 75           | 49          | 61            | 0                       | 2.8       | -0.29                   | 93                  |  |

<sup>1</sup> All plots planted June 21 and dug Nov. 3. June data for entire month and after planting (in parentheses).

<sup>2</sup> Incomplete Mesonet records. August departure from 15-year average temperature from Hinton due to extensive incomplete records for Fort Cobb.

### Table 2. Crop value, yield, grade, Sclerotinia blight and shelling characteristics in advanced runner breeding lines and commercial cultivars planted at the Caddo Research Station in Fort Cobb on June 21, 2023.<sup>1</sup>

| Entry        | Revenue<br>(\$/A) <sup>2</sup> | Yield<br>(lbs/A) | Grade <sup>3</sup> | SM⁴     | 100-seed<br>(g) | VDK<br>(%)⁵ | Hull<br>(%) |
|--------------|--------------------------------|------------------|--------------------|---------|-----------------|-------------|-------------|
| SW Runner    | 1089a                          | 4746a            | 70.6ab             | 0.4d    | 57.7c           | 0.4         | 27.3ab      |
| ARSOK R109-1 | 1080a                          | 4628a            | 71.7a              | 12.2b-d | 66.3ab          | 0.2         | 24.3c       |
| Lariat       | 1049a                          | 4584a            | 70.4ab             | 9.2cd   | 69.7a           | 0.2         | 24.6c       |
| FloRun '107' | 851b                           | 3778b            | 69.4bc             | 54.4a   | 63.8b           | 0.6         | 26.5b       |
| IPG 517      | 736c                           | 3357b            | 67.5c              | 30.0b   | 62.5b           | 0.2         | 28.6a       |
| ACI 509      | 695c                           | 3088b            | 69.4bc             | 20.4bc  | 55.8c           | 0.5         | 25.8bc      |

<sup>1</sup> Entries sorted by highest to lowest contract revenue per acre. Runners were dug Nov. 3 (136 days after planting; 2,823 growing degree days in Fahrenheit). Numbers with the same lowercase letter within columns are not significantly different ( $\alpha$  = 0.05). No differences among entries if letters absent in column.

<sup>2</sup> Based on a contract price per ton of \$650 for runners. Calculations do not include deductions for excess splits or damaged and other kernels.

<sup>3</sup> Grade = % total sound mature kernels + sound splits.

<sup>4</sup> Incidence of Sclerotinia blight rated on Oct. 13.

<sup>5</sup> VDK, visibly damaged kernels.

Table 3. Three-year averages for Sclerotinia blight, yield (pounds per acre) and seed grade in runner advanced breeding lines and commercial cultivars at the Caddo Research Station in Fort Cobb (2021-2023).<sup>1</sup>

|              | 2     | 2021-2023               |                 |  | 2023                          |      |     |                  | 2022 |     | 2021             |      |     |  |
|--------------|-------|-------------------------|-----------------|--|-------------------------------|------|-----|------------------|------|-----|------------------|------|-----|--|
| Entry        | Yield | <b>GRD</b> <sup>2</sup> | SM <sup>3</sup> |  | Yield                         | GRD  | SM  | Yield            | GRD  | SM  | Yield            | GRD  | SM  |  |
| Runner       |       |                         |                 |  | 136 DAP/2823 GDD <sup>4</sup> |      |     | 148 DAP/3203 GDD |      |     | 166 DAP/3409 GDD |      |     |  |
| Lariat       | 4509a | 72a                     | 13bc            |  | 4584a                         | 70ab | 9b  | 5324a            | 71a  | 25c | 3618             | 75a  | 4b  |  |
| FloRun '107' | 3599b | 69c                     | 53a             |  | 3778b                         | 69b  | 54a | 3775b            | 66b  | 88a | 3183             | 70b  | 16a |  |
| SW Runner    | 4510a | 69bc                    | 4c              |  | 4746a                         | 71ab | 0b  | 4925a            | 68ab | 10c | 3860             | 69b  | 0b  |  |
| ARSOK R109-1 | 4394a | 71ab                    | 26b             |  | 4628a                         | 72a  | 12b | 5215a            | 71a  | 50b | 3340             | 72ab | 16a |  |

<sup>1</sup> Numbers with the same lowercase letter within columns are not significantly different (a = 0.05).

<sup>2</sup> Grade = % total sound mature kernels + sound splits.

<sup>3</sup> SM, % incidence of Sclerotinia blight. Sclerotinia blight-susceptible (FloRun '107) and resistant (Southwest Runner) controls.

<sup>3</sup> Days after planting (DAP) when dug; peanut growing degree days (GDD) heat units in Fahrenheit calculated by Mesonet. Planting

and digging dates: 2023, June 21 and Nov. 3; 2022, June 6 and Oct. 31; 2021, May 14 and Oct. 26.



Table 4. Crop value, yield, grade, Sclerotinia blight and shelling characteristics in advanced Spanish/Valencia breeding lines and commercial cultivars planted at the Caddo Research Station in Fort Cobb on June 21, 2023.<sup>1</sup>

| Entry         | Market<br>Type        | Revenue<br>(\$/A) <sup>2</sup> | Yield<br>(lbs/A) | Grade <sup>3</sup> | SM⁴   | 100-seed<br>(g) | VDK<br>(%)⁵ | Hull<br>(%) |
|---------------|-----------------------|--------------------------------|------------------|--------------------|-------|-----------------|-------------|-------------|
| NM16-17       | Valencia              | 1351a                          | 4039bc           | 70.4bc             | 0b    | 53.5cd          | 0.7ab       | 27.6ab      |
| NM16-42       | Valencia              | 1317ab                         | 3951bc           | 70.2b-d            | 0b    | 53.3cd          | 0.7ab       | 27.2bc      |
| NMPR25        | Valencia              | 1282a-c                        | 3891bc           | 69.4b-d            | 0.8b  | 52.7cd          | 0.5ab       | 28.2ab      |
| TAMVal OL14   | Valencia              | 1281a-c                        | 3889bc           | 69.3b-d            | 0b    | 57.3ab          | 1.2a        | 28.2ab      |
| IPG 1288      | Valencia <sup>6</sup> | 1255a-d                        | 3656bc           | 72.2ab             | 38.3a | 59.0a           | 0.7ab       | 24.9cd      |
| NM-KC25       | Valencia              | 1251a-d                        | 3743bc           | 70.4bc             | 1.7b  | 54.1b-d         | 0.8ab       | 27.8ab      |
| NM-M6         | Valencia              | 1190b-e                        | 3596bc           | 69.7b-d            | 0b    | 53.0cd          | 0.6ab       | 28.3ab      |
| OLé           | Valencia              | 1183c-e                        | 4811a            | 70.3b-d            | 0b    | 44.2e           | 0.5ab       | 27.1bc      |
| NM310         | Valencia              | 1127d-f                        | 3527c            | 67.3d              | 0b    | 51.6d           | 0.7ab       | 29.8a       |
| ARSOK R58B    | Spanish <sup>6</sup>  | 1093e-g                        | 4244ab           | 73.6a              | 0.8b  | 56.2a-c         | 0.4b        | 24.8d       |
| ARSOK S105-4E | Spanish               | 1008f-h                        | 4167a-c          | 69.2cd             | 0b    | 54.3b-d         | 0.6ab       | 28.3ab      |
| ARSOK S105-3E | Spanish               | 988gh                          | 4011bc           | 70.4bc             | 1.3b  | 54.7b-d         | 0.5ab       | 27.5b       |
| ARSOK S104-3E | Spanish               | 979gh                          | 3993bc           | 70.2b-d            | 0b    | 52.8cd          | 0.5ab       | 27.9ab      |
| ARSOK S104-2E | Spanish               | 947h                           | 3867bc           | 70.0b-d            | 0b    | 51.9d           | 0.5ab       | 27.8ab      |

<sup>1</sup> Entries sorted by highest to lowest contract revenue per acre. Peanuts were dug Nov. 3 (136 days after planting; 2,823 growing degree days in Fahrenheit). Numbers with the same lowercase letter within columns are not significantly different ( $\alpha$  = 0.05). No differences among entries if letters absent in column.

<sup>2</sup> Based on a contract price per ton of \$700/ton for Spanish and \$950/ton for Valencia. Calculations do not include deductions for excess splits or damaged and other kernels.

<sup>3</sup> Grade = % total sound mature kernels + sound splits.

<sup>4</sup> Incidence of Sclerotinia blight rated on Oct. 13.

<sup>5</sup> VDK, visibly damaged kernels.

<sup>6</sup> IPG 1288, red-seeded runner; ARSOK R58B, small-seeded runner.

| Table 5. Three-year averages for Sclerotinia blight, yield (pounds per acre) and seed grade in Spanish advanced breed- |
|------------------------------------------------------------------------------------------------------------------------|
| ing lines and commercial cultivars at the Caddo Research Station in Fort Cobb (2021-2023). <sup>1</sup>                |

|               | 20      | 21-2023                 |                 | 2023                          |     |    |                                               | 2022  |     |                  |  | 2021  |       |    |
|---------------|---------|-------------------------|-----------------|-------------------------------|-----|----|-----------------------------------------------|-------|-----|------------------|--|-------|-------|----|
| Entry         | Yield   | <b>GRD</b> <sup>2</sup> | SM <sup>3</sup> | Yield                         | GRD | SM |                                               | Yield | GRD | SM               |  | Yield | GRD   | SM |
| Runner        |         |                         |                 | 136 DAP/2823 GDD <sup>4</sup> |     |    | 36 DAP/2823 GDD <sup>4</sup> 148 DAP/3203 GDD |       |     | 166 DAP/3409 GDD |  |       | ) GDD |    |
| OLé           | 4084a   | 70ab                    | 1b              | 4811a                         | 70  | 0  |                                               | 4804  | 69  | 3b               |  | 2614  | 70a-c | —  |
| ARSOK S104-2E | 3584bc  | 71a                     | 3ab             | 3867b                         | 70  | 0  |                                               | 4586  | 70  | 5ab              |  | 2299  | 74a   | _  |
| ARSOK S104-3E | 3658a-c | 69ab                    | 5ab             | 3993b                         | 70  | 0  |                                               | 4574  | 67  | 10ab             |  | 2408  | 71ab  | _  |
| ARSOK S105-3E | 3794a-c | 69ab                    | 2ab             | 4011b                         | 70  | 1  |                                               | 4753  | 66  | 4b               |  | 2589  | 70a-c | —  |
| ARSOK S105-4E | 3866ab  | 69ab                    | 3ab             | 4167b                         | 69  | 0  |                                               | 4913  | 68  | 5ab              |  | 2517  | 71ab  | _  |
| NM16-17       | 3363c   | 68b                     | 4ab             | 4039b                         | 70  | 0  |                                               | 3908  | 65  | 8ab              |  | 2178  | 66c   | —  |
| NM16-42       | 3487bc  | 69ab                    | 9a              | 3951b                         | 70  | 0  |                                               | 4054  | 68  | 18a              |  | 2456  | 69bc  | _  |

<sup>1</sup> Numbers with the same lowercase letter within columns are not significantly different (a = 0.05).

<sup>2</sup> Grade = % total sound mature kernels + sound splits.

<sup>3</sup> SM, % incidence of Sclerotinia blight. No Sclerotinia ratings taken in 2021 in the Spanish/Valencia trial due to low levels of disease.

<sup>4</sup> Days after planting (DAP) when dug; peanut growing degree days (GDD) heat units in Fahrenheit calculated by Mesonet. Planting and digging dates: 2023, June 21 and Nov. 3; 2022, June 6 and Oct. 31; 2021, May 14 and Oct. 26.



Table 6. Crop value, yield, grade, Sclerotinia blight, pod and shelling characteristics in advanced Virginia breeding lines and commercial cultivars planted at the Caddo Research Station in Fort Cobb on June 21, 2023.<sup>1</sup>

| Entry        | Revenue<br>(\$/A) <sup>2</sup> | Yield<br>(lbs/A) | Grade <sup>3</sup> | SM⁴    | 100-seed<br>(g) | VDK<br>(%)⁵ | Hull<br>(%) | Super Jumbo<br>(%) | Jumbo<br>(no./oz)² | Fancy<br>(no./oz) <sup>2</sup> |
|--------------|--------------------------------|------------------|--------------------|--------|-----------------|-------------|-------------|--------------------|--------------------|--------------------------------|
| ARSOK V99    | 1120a                          | 4537a            | 68.1               | 5.0b   | 83.0cd          | 0.8         | 30.0b       | 12.7a              | 14.7bc             | 19.7d-f                        |
| Comrade      | 1009b                          | 4103ab           | 67.8               | 23.3ab | 98.1a           | 0.5         | 30.8ab      | 10.0d              | 15.3b              | 23.5bc                         |
| Jupiter      | 974b                           | 4092ab           | 65.6               | 21.1ab | 88.8b           | 0.7         | 32.9ab      | 11.3bc             | 14.0cd             | 21.0cd                         |
| ARSOK V103-3 | 969b                           | 4014a-c          | 66.5               | 25.8ab | 89.5b           | 1.1         | 31.5ab      | 11.9ab             | 17.7a              | 26.9a                          |
| ARSOK V98    | 962b                           | 4026a-c          | 65.9               | 4.6b   | 88.1bc          | 0.7         | 32.6ab      | 11.0c              | 12.9d              | 17.6ef                         |
| ARSOK V103-1 | 920bc                          | 3921a-c          | 64.8               | 10.7b  | 90.2b           | 0.9         | 33.4a       | 11.8ab             | 17.1a              | 25.6ab                         |
| Bailey II    | 846c                           | 3531bc           | 66.1               | 22.9ab | 82.1d           | 0.7         | 31.8ab      | 11.4bc             | 12.9d              | 16.9f                          |
| Emery        | 825c                           | 3395c            | 67.1               | 38.8a  | 86.6b-d         | 0.5         | 31.4ab      | 11.2bc             | 14.1c              | 20.7с-е                        |

<sup>1</sup> Entries sorted by highest to lowest contract revenue per acre. Peanuts were dug Nov. 3 (136 days after planting; 2,823 growing degree days in Fahrenheit). Numbers with the same lowercase letter within columns are not significantly different (α = 0.05). No differences among entries if letters absent in column.

<sup>2</sup> Based on contract price of \$650/ton. Calculations do not include deductions for excess splits or damaged and other kernels.

<sup>3</sup> Grade = % total sound mature kernels + sound splits.

<sup>4</sup> Incidence of Sclerotinia blight rated on Oct. 13.

<sup>5</sup> VDK, visibly damaged kernels.

<sup>6</sup> Number of pods per ounce for pods riding slotted screens sized for super jumbo (40/64 x 3" slots), jumbo (37/64 x 3"), fancy (32/64 x 3")

Figure 1. Percent pod size distribution by weight among Virginia entries in 2021 and 2022 disease trials. Pods were sorted using slotted screens sized for super jumbo ( $40/64 \times 3$ " slots), jumbo ( $37/64 \times 3$ ") and fancy ( $32/64 \times 3$ "). Pass-through pods fit through  $32/64 \times 3$ " screen.

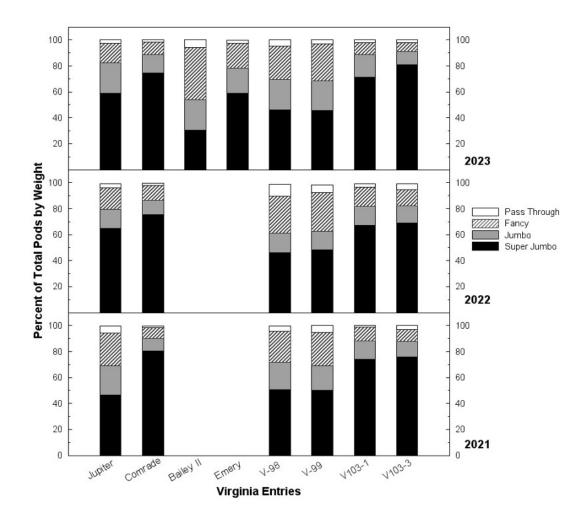





Table 7. Three-year averages for Sclerotinia blight, yield (pounds per acre), and seed grade in Virginia advanced breeding lines and commercial cultivars at the Caddo Research Station in Fort Cobb (2021-2023).<sup>1</sup>

|              |        | 2021-2023               | 5               |       | 2023                          |      |       | 2022             |      |        | 2021             |      |  |
|--------------|--------|-------------------------|-----------------|-------|-------------------------------|------|-------|------------------|------|--------|------------------|------|--|
| Entry        | Yield  | <b>GRD</b> <sup>2</sup> | SM <sup>3</sup> | Yield | GRD                           | SM   | Yield | GRD              | SM   | Yield  | GRD              | SM   |  |
| Virginia     |        |                         |                 | 136   | 136 DAP/2823 GDD <sup>4</sup> |      |       | 148 DAP/3203 GDD |      |        | 166 DAP/3409 GDD |      |  |
| Jupiter      | 4007ab | 64c                     | 34a             | 4092  | 66                            | 21ab | 4711  | 61c              | 58a  | 3219ab | 64c              | 23a  |  |
| Comrade      | 3985ab | 69a                     | 31a             | 4103  | 68                            | 23ab | 4852  | 67a              | 62a  | 3001ab | 72a              | 8ab  |  |
| ARSOK V98    | 3911ab | 67a-c                   | 10b             | 4014  | 66                            | 5b   | 5106  | 64ab             | 21bc | 2614b  | 69a-c            | 5b   |  |
| ARSOK V99    | 4400a  | 68a                     | 6b              | 4537  | 68                            | 5b   | 5034  | 65ab             | 6c   | 3630a  | 70ab             | 8ab  |  |
| ARSOK V103-1 | 3957ab | 67ab                    | 30a             | 3921  | 65                            | 26a  | 4925  | 64a-c            | 46ab | 3025ab | 71ab             | 17ab |  |
| ARSOK V103-3 | 3794b  | 65bc                    | 19ab            | 4026  | 66                            | 11ab | 4501  | 62bc             | 25bc | 2856ab | 66bc             | 24a  |  |

Entries are sorted from highest to lowest two-year average yield. Numbers with the same lowercase letter within columns for each market type are not significantly different (*a* = 0.05). No differences among entries if letters absent in column.

<sup>2</sup> Grade = % total sound mature kernels + sound splits.

<sup>3</sup> SM, % incidence of Sclerotinia blight.

<sup>4</sup> Days after planting (DAP) when dug; peanut growing degree day (GDD) heat units in Fahrenheit calculated by Mesonet. Planting and digging dates: 2023, June 21 and Nov. 3; 2022, June 6 and Oct. 31; 2021, May 14 and Oct. 26.

Table 8. Pod rot in Virginia entries planted in the 2023 pod rot nursery and 2021 cultivar/advanced breeding line trial at the Caddo Research Station, Fort Cobb.<sup>1</sup>

|                         | Ро                   | d Rot %                      |
|-------------------------|----------------------|------------------------------|
| Entry                   | 2023 Pod Rot Nursery | 2021 Cultivar/Breeding Lines |
| Bailey II               | 5.3c                 | -                            |
| Comrade                 | 11.3bc               | 31.3ab                       |
| Emery                   | 1.3c                 | _                            |
| Jupiter                 | 20.5ab               | 43.8a                        |
| ARSOK V99               | 4.0c                 | 20.5bc                       |
| ARSOK V103-1            | 1.3c                 | 10.5c                        |
| ARSOK V103-3            | 2.3c                 | 4.0c                         |
| PI 365553 (resistant)   | 1.0c                 | -                            |
| PI 378012 (susceptible) | 27.5a                | _                            |

<sup>1</sup> 2023 pod rot nursery planted on June 17; 2021 plots planted on May 14. Numbers with the same lowercase letter within columns for each market type are not significantly different (a = 0.05).

<sup>2</sup> Percentage of pods with symptoms of pod rot estimated within 3 days after digging.

The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

The pesticide information presented in this publication was current with federal and state regulations at the time of printing. The user is responsible for determining that the intended use is consistent with the label of the product being used. Use pesticides safely. Read and follow label directions. The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

Oklahoma State University, as an equal opportunity employer, complies with all applicable federal and state laws regarding non-discrimination and affirmative action. Oklahoma State University is committed to a policy of equal opportunity for all individuals and does not discriminate based on race, religion, age, sex, color, national origin, marital status, sexual orientation, gender identity/expression, disability, or veteran status with regard to employment, educational programs and activities, and/or admissions. For more information, visit https://eeo.okstate. edu. This report of the Oklahoma Agricultural Experiment Station is printed and issued by Oklahoma State University as authorized by the Vice President for Agricultural Programs and has been prepared and distributed at a cost of \$3.89 per copy.





## **2023 Peanut Weed Management Report**

#### Todd Baughman, Zachary Treadway, Jenny Dudak and Karina Beneton Oklahoma State University, Department of Plant and Soil Sciences

Peanut weed management trials were conducted at the Oklahoma State University Caddo Research Station near Fort Cobb. Peanuts were planted on May 8, 2023, in 36-inch rows. Preemergence (PRE) treatments were applied immediately after planting. The volunteer cotton trial received an overlay of Prowl (1 qt/A) + Valor (2 oz/A) PRE. All trials received a postemergence (POST) application of Select (1 pt/A) + Dyne-Amic (6 fl oz/A). The preemergence herbicide and Brake tolerance trials received Butyrac 200 (1 pt/A) + Dyne-Amic (6 fl oz/A) POST. These trials were irrigated and maintained throughout the growing season. Trials were visually evaluated for peanut response and weed control. Peanuts were dug, field dried and harvested (10/11/23).

The first trial was established to evaluate preemergence herbicides for peanut response and weed control. Preemergence herbicides evaluated included BAS 85001H, a new PPO herbicide for potential use in peanut. Additional herbicides included Valor, Prowl H2O and Pursuit. Peanut stand reduction was 5% or less for all treatments (data not shown). Peanut injury was initially less than 5% for all treatment (Table 1). Peanut injury four weeks after planting (WAP) was greater than 5% with BAS 85001H at 2 fl oz/A and Valor + Pursuit with and without Prowl H2O. Late-season peanut injury was not observed for any treatment. Palmer amaranth (Table 2) and Texas panicum (Table 3) control was at least 98% all season long with all treatments except BAS 85001H (0.68 fl oz/A) and Prowl H2O. When evaluated, 12 WAP ivyleaf morningglory control was 99-100% with all Valor + Pursuit combinations. Peanut yields were greater than 4,500 lbs/A for all treatments except where Prowl H2O was applied alone. (Table 1).

The second trial evaluated various in-season herbicides to control either Xtend or Enlist volunteer cotton in peanuts. Initial peanut injury was 10% with all Gramoxone and Aim treatments (Table 5). All peanut injury had subsided by four weeks after treatment (WAT). Xtend (dicamba tolerant) volunteer cotton control was 94% (4 WAT) and 83% (9 WAT) with 2,4-DB (Table 6). This compared to no control on Enlist (2,4-D tolerant) volunteer cotton (Table 6). Aim alone or in combination with Anthem Flex controlled 80-88% (4 WAT) and 68-73% (9 WAT) of both Xtend and Enlist volunteer cotton. Anthem Flex alone, which contains a low rate of Aim, only controlled 40-50% of either volunteer cotton. Gramoxone control was 55-69% of both Xtend and Enlist volunteer cotton. Peanut yields were not affected by any of the treatments applied (Table 5).

The third trial evaluated peanut variety response to Brake (fluridone) herbicide applied preemergence. Peanut stand reduction was 5% or less with all treatments applied (data not shown). Peanut stunting was 5% or less season long with Brake on OLé peanut variety (Table 7). Peanut stunting was less than 5% with Span17 peanut variety except with the 1X and 2X rate of Brake (4 WAP). Peanut stunting was 4-6% with the 1X and 2X rate of Brake with Lariat peanut variety.



Visual peanut injury (2-4 WAP) was 6-11% for all varieties. Visual peanut injury was 5% or less for all treatments except the 2X rate of Brake with the Lariat variety 8 WAP and injury was less than 5% for all varieties 12 WAP. Peanut yields were not statistically different for any treatments, however, yields of OLé treated with a 2X rate of Brake PRE were less than 5,000 lbs/A.

Two additional weed management trials were conducted on-farm. In one trial, weed control was at least 95% (Palmer amaranth, volunteer cotton, annual grass control) with various combinations of Anthem Flex (data not shown). In a second trial, late season of control of Palmer amaranth was poor with various combinations of Cobra applied POST (data not shown).

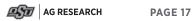
### Acknowledgments

The authors would like to express our gratitude to the Oklahoma Peanut Commission and the National Peanut Board for their support of this research. Additionally, we would like to extend our appreciation to the research staff at the Oklahoma State University Caddo Research Station: Bobby Weidenmaier, Brennan Leighton and Harley Houston. We would also like to thank Steve King and Jon Keahey for allowing us to conduct research on their farms. Without the support of these groups and individuals, along with the producers of Oklahoma, the development and results of this research would not be possible.



| Treatment            | R    | ate     | 2 WAP    | Peanut Injury<br>4 WAP | 12 WAP  | Peanut Yield |
|----------------------|------|---------|----------|------------------------|---------|--------------|
|                      |      |         |          | %                      |         | (lb/A)       |
| BAS 85001H           | 0.68 | fl oz/a | 0        | 4                      | 0       | 4864         |
| BAS 85001H           | 1    | fl oz/a | 3        | 5                      | 0       | 5242         |
| BAS 85001H           | 2    | fl oz/a | 3        | 6                      | 0       | 4254         |
| BAS 85001H           | 0.68 | fl oz/a | 0        | 0                      | 0       | 5372         |
| + Prowl H2O          | 32   | fl oz/a |          |                        |         |              |
| BAS 85001H           | 1    | fl oz/a | 4        | 5                      | 0       | 4632         |
| + Prowl H2O          | 32   | fl oz/a |          |                        |         |              |
| Valor EZ             | 3    | fl oz/a | 1        | 1                      | 0       | 4821         |
| + Prowl H2O          | 32   | fl oz/a | 0        | 4                      | 0       | 4269         |
| Valor EZ             | 3    | fl oz/a | 3        | 0                      | 0       | 5147         |
| + Prowl H2O          | 32   | fl oz/a |          |                        |         |              |
| Valor EZ             | 3    | fl oz/a | 3        | 8                      | 0       | 4951         |
| + Pursuit            | 4    | fl oz/a |          |                        |         |              |
| Valor EZ             | 3    | fl oz/a | 1        | 8                      | 0       | 5184         |
| + Prowl H2O          | 32   | fl oz/a |          |                        |         |              |
| + Pursuit            | 4    | fl oz/a |          |                        |         |              |
| Valor EZ             | 2    | fl oz/a | 0        | 4                      | 0       | 5097         |
| + Prowl H2O          | 32   | fl oz/a |          |                        |         |              |
| + Pursuit            | 2    | fl oz/a |          |                        |         |              |
| + Pursuit (At Crack) | 2    | fl oz/a |          |                        |         |              |
| LSD P= .10<br>CV     |      |         | 4<br>157 | 3<br>56                | NS<br>O | 518<br>9     |

#### Table 1. Peanut response to preemergence herbicides, Fort Cobb 2023.


All treatments applied immediately after planting unless otherwise noted.

Entire trial area was treated with Select (8 fl oz/A) & 2,4-DB (16 fl oz/A) postemergence.

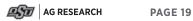


|                      |      |         | Р       | almer Amaranth Conti   | rol    |
|----------------------|------|---------|---------|------------------------|--------|
| Treatment            | Ra   | Rate    |         | Peanut Injury<br>4 WAP | 12 WAP |
|                      |      |         |         | %                      |        |
| BAS 85001H           | 0.68 | fl oz/a | 100     | 100                    | 98     |
| BAS 85001H           | 1    | fl oz/a | 100     | 100                    | 100    |
| BAS 85001H           | 2    | fl oz/a | 100     | 100                    | 100    |
| BAS 85001H           | 0.68 | fl oz/a | 100     | 100                    | 100    |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |
| BAS 85001H           | 1    | fl oz/a | 100     | 100                    | 100    |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |
| + Prowl H2O          | 32   | fl oz/a | 100     | 100                    | 98     |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |
| + Pursuit            | 4    | fl oz/a |         |                        |        |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |
| + Pursuit            | 4    | fl oz/a |         |                        |        |
| Valor EZ             | 2    | fl oz/a | 100     | 100                    | 100    |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |
| + Pursuit            | 2    | fl oz/a |         |                        |        |
| + Pursuit (At Crack) | 2    | fl oz/a |         |                        |        |
| LSD P= .10<br>CV     |      |         | NS<br>O | NS<br>O                | 3<br>3 |

Entire trial area was treated with Select (8 fl oz/A) & 2,4-DB (16 fl oz/A) postemergence.



#### Table 3. Texas panicum control with preemergence herbicides, Fort Cobb 2023.


|                      |      |         |         | Texas Panicum Contro   | I      |  |
|----------------------|------|---------|---------|------------------------|--------|--|
| Treatment            | R    | Rate    |         | Peanut Injury<br>4 WAP | 12 WAP |  |
|                      |      |         |         | %                      |        |  |
| BAS 85001H           | 0.68 | fl oz/a | 100     | 100                    | 100    |  |
| BAS 85001H           | 1    | fl oz/a | 100     | 100                    | 100    |  |
| BAS 85001H           | 2    | fl oz/a | 100     | 100                    | 100    |  |
| BAS 85001H           | 0.68 | fl oz/a | 100     | 100                    | 100    |  |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |  |
| BAS 85001H           | 1    | fl oz/a | 100     | 100                    | 100    |  |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |  |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |  |
| + Prowl H2O          | 32   | fl oz/a | 100     | 100                    | 98     |  |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |  |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |  |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |  |
| + Pursuit            | 4    | fl oz/a |         |                        |        |  |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100    |  |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |  |
| + Pursuit            | 4    | fl oz/a |         |                        |        |  |
| Valor EZ             | 2    | fl oz/a | 100     | 100                    | 100    |  |
| + Prowl H2O          | 32   | fl oz/a |         |                        |        |  |
| + Pursuit            | 2    | fl oz/a |         |                        |        |  |
| + Pursuit (At Crack) | 2    | fl oz/a |         |                        |        |  |
| LSD P= .10<br>CV     |      |         | NS<br>O | NS<br>O                | 2<br>1 |  |



| Table 4. Ivyleaf morningglory control with preemergence herbicides, Fort C | obb 2023. |
|----------------------------------------------------------------------------|-----------|
|----------------------------------------------------------------------------|-----------|

|                      |      |         | lvy     | leaf Morningglory Cor  | trol    |
|----------------------|------|---------|---------|------------------------|---------|
| Treatment            | Rate |         | 2 WAP   | Peanut Injury<br>4 WAP | 12 WAP  |
|                      |      |         |         | %                      |         |
| BAS 85001H           | 0.68 | fl oz/a | 100     | 81                     | 80      |
| BAS 85001H           | 1    | fl oz/a | 100     | 100                    | 95      |
| BAS 85001H           | 2    | fl oz/a | 100     | 97                     | 89      |
| BAS 85001H           | 0.68 | fl oz/a | 100     | 99                     | 96      |
| + Prowl H2O          | 32   | fl oz/a |         |                        |         |
| BAS 85001H           | 1    | fl oz/a | 100     | 99                     | 89      |
| + Prowl H2O          | 32   | fl oz/a |         |                        |         |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 93      |
| + Prowl H2O          | 32   | fl oz/a | 100     | 85                     | 83      |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 93      |
| + Prowl H2O          | 32   | fl oz/a |         |                        |         |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 100     |
| + Pursuit            | 4    | fl oz/a |         |                        |         |
| Valor EZ             | 3    | fl oz/a | 100     | 100                    | 99      |
| + Prowl H2O          | 32   | fl oz/a |         |                        |         |
| + Pursuit            | 4    | fl oz/a |         |                        |         |
| Valor EZ             | 2    | fl oz/a | 100     | 100                    | 100     |
| + Prowl H2O          | 32   | fl oz/a |         |                        |         |
| + Pursuit            | 2    | fl oz/a |         |                        |         |
| + Pursuit (At Crack) | 2    | fl oz/a |         |                        |         |
| LSD P= .10<br>CV     |      |         | NS<br>O | 14<br>13               | 10<br>9 |

Entire trial area was treated with Select (8 fl oz/A) & 2,4-DB (16 fl oz/A) postemergence.



|                  |      |         | Peanut  | t Injury |              |
|------------------|------|---------|---------|----------|--------------|
| Treatment        | Rate |         | 2 WAP   | 4 WAP    | Peanut Yield |
|                  |      |         | %       | 6        | (lb/A)       |
| XTEND Cotton     |      |         |         |          | ·            |
| Gramoxone        | 8    | fl oz/a | 10      | 0        | 5561         |
| 2,4-DB           | 24   | fl oz/a | 3       | 0        | 5881         |
| Anthem Flex      | 3    | fl oz/a | 4       | 0        | 5750         |
| Aim              | 1    | fl oz/a | 10      | 0        | 5460         |
| Anthem Flex      | 3    | fl oz/a | 10      | 0        | 5431         |
| + Aim            | 0.6  | fl oz/a |         |          |              |
| Enlist Cotton    |      | 1       |         | 1        |              |
| Gramoxone        | 8    | fl oz/a | 10      | 0        | 5721         |
| 2,4-DB           | 24   | fl oz/a | 0       | 0        | 5866         |
| Anthem Flex      | 3    | fl oz/a | 4       | 0        | 5503         |
| Aim              | 1    | fl oz/a | 10      | 0        | 5721         |
| Anthem Flex      | 3    | fl oz/a | 10      | 0        | 5605         |
| + Aim            | 0.6  | fl oz/a |         |          |              |
| LSD P= .10<br>CV |      |         | 3<br>37 | NS<br>O  | NS<br>9      |

 Table 5. Peanut response to postemergence herbicides, Fort Cobb 2023.

#### Table 6. Peanut response to postemergence herbicides, Fort Cobb 2023.

|                  |     |         | Volunteer Cot | tton Control |  |
|------------------|-----|---------|---------------|--------------|--|
| Treatment        | Ra  | ate     | 4 WAT         | 9 WAT        |  |
|                  |     |         | %             |              |  |
| XTEND Cotton     |     |         |               |              |  |
| Gramoxone        | 8   | fl oz/a | 60            | 60           |  |
| 2,4-DB           | 24  | fl oz/a | 94            | 83           |  |
| Anthem Flex      | 3   | fl oz/a | 45            | 48           |  |
| Aim              | 1   | fl oz/a | 85            | 73           |  |
| Anthem Flex      | 3   | fl oz/a | 80            | 70           |  |
| + Aim            | 0.6 | fl oz/a |               |              |  |
| Enlist Cotton    |     |         | 1             | I            |  |
| Gramoxone        | 8   | fl oz/a | 69            | 55           |  |
| 2,4-DB           | 24  | fl oz/a | 0             | 0            |  |
| Anthem Flex      | 3   | fl oz/a | 50            | 40           |  |
| Aim              | 1   | fl oz/a | 88            | 73           |  |
| Anthem Flex      | 3   | fl oz/a | 80            | 68           |  |
| + Aim            | 0.6 | fl oz/a |               |              |  |
| LSD P= .10<br>CV |     |         | 8<br>13       | 11<br>20     |  |



|                  |    |         |          | Peanut S | Stunting |         |         | Pean    | ut Injury |          |              |
|------------------|----|---------|----------|----------|----------|---------|---------|---------|-----------|----------|--------------|
| Treatment        |    | Rate    | 2 WAP    | 4 WAP    | 8 WAP    | 12 WAP  | 2 WAP   | 4 WAP   | 8 WAP     | 12 WAP   | Peanut Yield |
| Ole              |    | ·       |          |          |          |         |         |         | -         |          |              |
| Brake OX         | 0  | fl oz/a | 0        | 0        | 0        | 0       | 0       | 0       | 0         | 0        | 5336         |
| Brake 1X         | 16 | fl oz/a | 0        | 0        | 0        | 0       | 9       | 6       | 0         | 0        | 5474         |
| Brake 2X         | 32 | fl oz/a | 1        | 1        | 4        | 0       | 11      | 9       | 5         | 4        | 4930         |
| Span 17          |    |         |          |          |          |         |         |         |           |          |              |
| Brake OX         | 0  | fl oz/a | 0        | 0        | 0        | 0       | 0       | 0       | 0         | 0        | 5910         |
| Brake 1X         | 16 | fl oz/a | 1        | 6        | 3        | 0       | 8       | 8       | 3         | 1        | 5968         |
| Brake 2X         |    | fl oz/a | 4        | 6        | 4        | 0       | 11      | 10      | 4         | 3        | 5830         |
| Lariat           |    | ·       |          |          |          |         |         |         |           |          |              |
| Brake OX         | 0  | fl oz/a | 0        | 0        | 0        | 0       | 0       | 0       | 0         | 0        | 5975         |
| Brake 1X         | 16 | fl oz/a | 4        | 6        | 5        | 0       | 8       | 10      | 5         | 1        | 5902         |
| Brake 2X         | 32 | fl oz/a | 5        | 6        | 6        | 0       | 11      | 9       | 6         | 3        | 5881         |
| LSD P= .10<br>CV |    |         | 3<br>138 | 3<br>76  | 2<br>79  | NS<br>O | 3<br>33 | 3<br>48 | 2<br>67   | 2<br>139 | NS<br>10     |

#### Table 7. Peanut response to preemergence herbicides, Fort Cobb 2023.

E

AG RESEARCH

The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

The pesticide information presented in this publication was current with federal and state regulations at the time of printing. The user is responsible for determining that the intended use is consistent with the label of the product being used. Use pesticides safely. Read and follow label directions. The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

Oklahoma State University, as an equal opportunity employer, complies with all applicable federal and state laws regarding non-discrimination and affirmative action. Oklahoma State University is committed to a policy of equal opportunity for all individuals and does not discriminate based on race, religion, age, sex, color, national origin, marital status, sexual orientation, gender identity/expression, disability, or veteran status with regard to employment, educational programs and activities, and/or admissions. For more information, visit https://eeo.okstate.edu. This report of the Oklahoma Agricultural Experiment Station is printed and issued by Oklahoma State University as authorized by the Vice President for Agricultural Programs and has been prepared and distributed at a cost of \$3.89 per copy.



## 2023 Oklahoma Peanut Variety Trials

Kelly D. Chamberlin, Rebecca S. Bennett, Lyndsey Aguirre, USDA-Agricultural Research Service | Stillwater Maira Duffeck, OSU Department of Entomology and Plant Pathology Mark Payton, OSU Department of Statistics

### **Overview**

- Performance of runner entries varied, but averages across locations in 2023 indicated that cultivars ACI 3321 and Lariat were the top entries in yield and value per acre.
- The small-seeded runner types marketed as Spanish (AT9899 and Span17) were the leading cultivars in value per acre among the Spanish trial entries. Among the true Spanish entries, cultivar OLé and breeding line ARSOK S104-2E yielded best at 4,745 and 4,898 pounds per acre.
- Valenciacultivarsandbreedinglinesperformed well across locations, indicating this market type may be a good fit for production in Oklahoma.
- Significant differences were not noted in Virginia entry yields across locations and years. Cultivar Comrade was consistently the top performer for yield and value per acre.

Peanut production in Oklahoma is generally located in three geographical regions: southwestern, west-central and northwest. Each region differs from the others in environmental and biological stressors that affect crop production, so the same peanut cultivar will likely perform differently in each growing region. Therefore, the Oklahoma Peanut Variety Trials are conducted in each region annually and are designed to test the performance of commonly grown cultivars and potential cultivar releases against each other. In 2023, Valencia breeding lines and cultivars were added as trial entries due to industry interest in growing this market type in the state. Also included in the trial are several small-seeded runner lines or cultivars that are intended to be marketed as Spanish peanuts. These entries are noted as small-seeded runners in trial data tables. Like in 2022, the 2023 growing season was unusually hot with temperatures above 100 °F for part of July without any rainfall or relief. However, the crop did not suffer as severely as in 2022, showing less of a split in maturity. The results of these annual trials can serve as a guide for producers when choosing a cultivar to plant.

### **Variety Trial Methods**

All entries (cultivars and advanced breeding lines) in the Oklahoma Peanut Variety Trials were high-oleic. The following entries were included in all locations in 2023:

• 8 runner types: cultivars ACI 080, ACI 476, ACI 509, ACI 3321, and Lariat and breeding lines ARSOK 95-1, ARSOK R106-9L and ARSOK R109-1L

- 8 true Spanish types: cultivars OLé and Schubert and breeding lines ARSOK S104-2E, ARSOK S104-3E, ARSOK S105-3E and ARSOK S105-4E
- 4 small-seeded runner types (marketed as Spanish): Cultivars AT9899 and Span17 and breeding lines AR-SOK S95-1 and ARSOK S107-1L
- 5 true Valencia types: Cultivar TamVal14 and New Mexico State University breeding lines NM310, NMKC5, NMM6 and NMPR25
- 1 small-seeded runner type (marketed as Valencia): IPG 1288
- 8 Virginia types: Cultivars Bailey II, Comrade, and Emery and breeding lines ARSOK V-98, ARSOK V99, ARSOK V102-5, ARSOK V103-1 and ARSOK V103-3

All variety trials were conducted under an extensive pest management program. The objective was to prevent as much outside influence from pest pressures (weeds, disease and insects) on yield and grade as possible. The interaction between variety and location was significant, so the results were separated by location. Averages across locations and years were included to give producers a better estimate of line performance. Since the varieties and advanced line responses differed by location, growers may find the data for the county closest to their location to be the most useful in selecting a variety or varieties to grow. Due to space limitations, a re-duced number of runner and Virginia entries were included in the Davidson, Oklahoma, location. All test plots were planted using two 36-inch rows that were 15 feet long. Plots were seeded at a rate of 5 seeds/row foot (139,392 seeds/A). Trials were conducted using a randomized, complete block design with four replications. The entire plot was dug and then thrashed two to three days later. Peanuts were placed in a dryer until mois-ture reached 10%. The percentage of total sound mature kernels (% TSMK) was determined on a 200-gram sample from each plot.

Analysis of variance procedures were used to assess the effect of variety on the multiple response variables. SAS Version 9.4 (PROC MIXED) was used to conduct the analysis. Statistical significance was determined by market type, with Spanish and Valencia types being analyzed together. A randomized complete block design was used, and block is specified as a random effect in the model. Post-hoc comparisons using Tukey adjustments are reported when the overall variety effect is significant in the analysis of variance. Two means reported with the same letter are not significantly different at the 0.05 level.

Means for all observations were calculated for each entry and the overall trial. Suppose a given variety outyields another variety by as much or more than the standard error value. In that case, we are 95% sure the yield difference is real, with only a 5% probability the difference is due to chance alone. Results reported here should be representative of what might occur throughout the state but would be most applicable under environmental management conditions like those of the trials. The relative yields of all peanut varieties are affected by crop management and environmental factors, including soil type, summer conditions, soil moisture, disease, and insects. Value/acre was determined by converting estimated plot yields to tons/acre and using the 2023 contract price values for each market type (\$675 for runner types, \$700 for Spanish and Virginia types, and \$950 for Valencia types). No adjustments were made for damaged kernels or concealed damage. Virginia \$/A values may be underestimated as grade is not as large a factor for in-shell peanuts, and the extra-large kernels (ELK) bonus was not added to the final value/acre figure. Calculations of \$/A are based on yield and grade only and do not include possible input costs. The following formula was used: \$/A = yield (tons/A)\*contract price (\$/ton)\*grade.



### 2023 Caddo County Peanut Variety Trial

| Location:         | Fort Cobb         |
|-------------------|-------------------|
| Date Planted:     | May 17, 2023      |
| Dig Date:         |                   |
| Spanish/Valencia: | September 9, 2023 |
| Runner/Virginia:  | October 16, 2023  |
| Thresh Date:      |                   |
| Spanish/Valencia: | October 2, 2023   |
| Runner/Virginia:  | October 19, 2023  |

The trial was planted on May 17, 2023. Two digging dates were used based on entry market type. A conventional till seedbed was used and managed for foliar and soil-borne disease throughout the season. The average yield for the runner test was 4,071 lbs/A, and the average grade was 74% TSMK (Table 1). In general, grades were normal and not affected by the extremely hot summer. Entries ACI 080, ACI 3321, ACI 476 and Lariat had higher yields than other genotypes tested. Despite the extreme heat experienced in the 2023 growing season, yields were higher for most entries than in past years.

Among the Spanish and Valencia-type entries tested, the average yield and grade were 3,748 lbs/A and 66% TSMK, respectively. In Caddo County, statistical differences among entries were reported for yield. For true Spanish types, breeding line ARSOK S104-3E had the highest yield numerically at 4,122 lbs/A, but this was not significantly different than yields for several other lines or the cultivar OLé. Due to differences in growth habits between runner and Spanish-type peanut plants, small-seeded runners (marketed as Spanish) normally have a slightly higher yield than traditional Spanish. Among the true Valencia-type entries, NMPR25 and TamVal14 had the highest yields at 3,490 and 3,071 lbs/A, respectively. Entry IPG 1288, a small-seeded runner marketed as a Valencia type, had the highest overall yield at 4,592 lbs/A and the highest value per acre at \$1,396.

Entries in the Virginia test yielded lower than in past years, averaging 3,079 lbs/A with an average grade of 63% TSMK. Statistical differences were reported for yield and grade. Breeding line ARSOK V103-1 was the top yielder at 3,538 lbs/A but was statistically indistinguishable from cultivars Comrade at 3,479 lbs/A and Emery at 3,465 lbs/A.

Table 5 contains yield and grade data averaged across 2022-2023 for the Caddo County trial. Not all entries included in the 2023 trial were included in 2022. The average yield among runner entries for the two years was 4,952 lbs/A, and the average grade was 71% TSMK. Significant differences in yield were reported for runner entries over the two-year period. For Spanish entries, significant differences in yield were also observed. As expected, the small-seeded runner cultivars, AT9899 and Span17, were the top yielders, averaging 4,838 and 5,164 lbs/A., respectively. Cultivars OLé and Schubert averaged 4,638 and 4,237 lbs/A, respectively. The average yield for Virginia entries in 2022-2023 was 4,474 lbs/A, and statistical differences in yield were seen among entries. The top-yielding cultivar was Comrade at 4,990 lbs/A.



### 2023 Blaine County Variety Trial

| Location:         | Hydro (Schantz Farms) |
|-------------------|-----------------------|
| Date Planted:     | May 15, 2023          |
| Dig Date:         |                       |
| Spanish/Valencia: | October 2, 2023       |
| Runner/Virginia:  | October 17, 2023      |
| Thresh Date:      |                       |
| Spanish/Valencia: | October 6, 2023       |
| Runner/Virginia:  | October 20, 2023      |

The trial was planted on May 15, 2023, into a conventional till seedbed and managed for weeds as well as foliar and soil-borne diseases throughout the season. Heavy rains and cool weather after planting resulted in a slow start for this trial. However, at the end of the growing season, this trial location proved to be the top performer for 2023. The average yield for the runner test (Table 2) was 6,548 lbs/A with an average grade of 73% TSMK. Statistical differences for yield and grade were reported, but the top-yielding cultivar was Lariat at 7,275 lbs/A. Breeding line ARSOK R109-1L also performed exceptionally well, yielding 7,088 lbs/A. For all entries, yields and grades were generally above normal.

Similar results were seen for the Spanish and Valencia entries at this location. For the true Spanish-type entries, cultivar OLé yielded 4,890 lbs/A, and breeding lines ARSOK S104-2E, ARSOK S104-3E and ARSOK S105-3E all had exceptional yields at 5,273, 5,591 and 5,057 lbs/A. Among small-seeded runners to be marketed as Spanish, cultivar Span17 was the top yielder at 6,568 lbs/A, but breeding line ARSOK S107-1L was impressive, yielding 5,953 lbs/A. The trial averaged 5,005 lbs/A and 64% TSMK.

Valencia entries also did well at this location. Entries TamVal14 and NMPR25 were exceptional, yielding 4,689 and 4,569 lbs/A, respectively. Small-seeded runner (marketed as a Valencia) IPG 1288 yielded 5,774 lbs/A with a grade of 71% TSMK.

Virginia entries averaged 6,706 lbs/A and a grade of 68% TSMK, which was much higher than in previous years. Cultivar Comrade topped the group, yielding 7,703 lbs/A with a grade of 70% TSMK. Breeding lines ARSOK V103-1 and ARSOK V103-3 also yielded well, each just over 6,800 lbs/A. No two-year averages were calculated since no trial was held in this location in 2022.



### 2023 Tillman County Variety Trial

| Location:         | Davidson (Joe D. White Farms) |
|-------------------|-------------------------------|
| Date Planted:     | May 7, 2023                   |
| Dig Date:         |                               |
| Spanish/Valencia: | October 9, 2023               |
| Runner/Virginia:  | October 17, 2023              |
| Thresh Date:      |                               |
| Spanish/Valencia: | October 12, 2023              |
| Runner/Virginia:  | October 20, 2023              |

The trial was planted on May 17, 2023, into a conventional till seedbed and managed for foliar and soilborne diseases throughout the season. Table 3 shows the 2023 yield and grade data from Tillman County. Overall, yields were average, considering the stress of the growing season. Statistical differences were seen among entries. The average yield and grade for the runner test was 5,178 lbs/A and 73% TSMK. ACI 3321 had the highest yield among cultivars tested in the trial at 5,661 lbs/A, followed by Lariat at 5,318 lbs/A. Due to space limitations, ARS breeding lines were not included at this location.

Spanish and Valencia entries performed well in Tillman County in 2023 with the average yield being 4,541 lbs/A and an average grade of 66% TSMK. For the true Spanish type entries, cultivar OLé and breeding line ARSOK S104-2E yielded best at 5,300 and 5,348 lbs/A. Small-seeded runner breeding line IPG 1288 performed exceptionally well, yielding 5,868 lbs/A, which was similar to cultivar Span17 at 5,813 lbs/A.

The average yield and grade for Virginia-type entries were average for Tillman County at 5,260 lbs/A and 68% TSMK. Due to space limitations, Virginia breeding lines were not included at this location. Significant differences in yield were not reported.

Table 6 contains yield and grade data averaged across 2022-2023 for the Tillman County trial. Not all entries included in the 2023 trial were included in the 2022 trial. The average yield among runner entries for the two years was 6,096 lbs/A, and the average grade was 73% TSMK. Significant differences in yield were reported for runner entries over the two years, and cultivar Lariat was the top yielder at 6,452 lbs/A. For Span-ish entries, significant differences in yield were also observed. As expected, the small-seeded runner cultivar Span17 was the top yielder, averaging 6,429 lbs/A. True Spanish cultivars OLé and Schubert averaged 6,277 and 5,284 lbs/A, respectively. The average yield for Spanish entries in 2022-2023 was 5,743 lbs/A. No data for Virginia entries was averaged over the two years due to a lack of common entries.



### **Performance Across Locations**

Table 4 includes Oklahoma Variety Trial yield and grade data averaged across locations for 2023. Statis-tical differences for yield were reported for runner and Spanish/Valencia entries but not for Virginia entries. Among the runner types tested, cultivars ACI 3321 and Lariat had the highest yields at 5,761 and 5,448 lbs/A, respectively. Yields were similar when compared to years past, despite the extreme weather experienced in both years. On average, the top yielding small-seeded runner entry was Span17 at 5,453 lbs/A, and the top true Spanish entry was cultivar OLé at 4,745 lbs/A. Among the true Valencia entries, NMPR25 yielded the best at 4,088 lbs/A. Across locations, the Virginia-type cultivars performed similarly with no significant differences in yield noted. Cultivar Comrade had the top yield at 5,511 lbs/A.

Table 7 shows results from the Oklahoma Peanut Variety Trial common entries averaged across locations (Caddo and Tillman counties) for two years (2022-2023). Averaged over the years and across locations, the runner cultivars tested were not significantly different. The mean yield for runner-type entries was 5,587 lbs/ A. Among the Spanish entries, the mean yield was 5,126 lbs/A with the small-seeded runner-types Span17 and AT9899 yielding the highest at 5,797 and 5,484 lbs/A, respectively. The poorest average yield for Spanish en-tries was Schubert at 4,760 lbs/A. No data for Virginia entries was averaged over the two years due to a lack of common entries.

### Acknowledgments

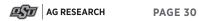
Special thanks to Lyndsey Aguirre, Angie Harting, Amna Dar, Kyren Bunyard and Macy Koch of the US-DA-ARS for technical support and to Bobby Weidenmaier, Harley Houston and Brennan Leighton at the Caddo Research Station for location support. Thanks also to farmer cooperators Merlin Schantz and Joe D. White.

This research is supported by USDA-ARS Current Research Information System (CRIS) Project No. 3072-21220-009-00D, the Oklahoma Peanut Commission, the National Peanut Board and OSU Ag Research. Men-tion of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.



| Table 1. Agronomic and shelling characteristics for entries in the 2023 Oklahoma Peanut Variety Trial. Location: Caddo |
|------------------------------------------------------------------------------------------------------------------------|
| Research Station in Fort Cobb. <sup>6</sup>                                                                            |

|                       | Yield      | % of Trial   | Grade <sup>2</sup>    | SMK/1003 | <b>ELK</b> <sup>₄</sup> | <b>MED</b> <sup>₄</sup> | No.1 <sup>4</sup> | Shelling | Value⁵ |
|-----------------------|------------|--------------|-----------------------|----------|-------------------------|-------------------------|-------------------|----------|--------|
| Entry                 | (lb/A)     | Average      | (%TSMK)               | (g)      |                         |                         | %                 |          | (\$/A) |
| Runner <sup>1</sup>   |            |              |                       |          |                         |                         |                   |          |        |
| ACI 080               | 4789a      | 118          | 72d                   | 66d      | 33d                     | 39a                     | 23cd              | 73e      | 1,164  |
| ACI 476               | 4210c      | 103          | 73c                   | 65d      | 48a                     | 31c                     | 20e               | 74d      | 1,037  |
| ACI 509               | 3511e      | 86           | 74b                   | 63e      | 40c                     | 37b                     | 22d               | 75c      | 877    |
| ACI 3321              | 4515b      | 111          | 74b                   | 73b      | 44b                     | 29d                     | 35a               | 76b      | 1,128  |
| Lariat                | 3975cd     | 98           | 76a                   | 73b      | 48a                     | 26e                     | 20e               | 77a      | 1,020  |
| ARSOK R95-1           | 3852d      | 95           | 73c                   | 76a      | 44b                     | 24f                     | 30b               | 75c      | 949    |
| ARSOK R106-9L         | 3906d      | 96           | 73c                   | 70c      | 46ab                    | 26e                     | 20e               | 75c      | 962    |
| ARSOK R109-1L         | 3810d      | 94           | 74b                   | 71c      | 45b                     | 28d                     | 24c               | 76b      | 952    |
| Mean                  | 4071       |              | 74                    | 70       | 44                      | 2                       | 24                | 75       |        |
| Standard Error        | 250        |              | 0.9                   | 1.4      | 2                       | 1.8                     | 1.7               | 0.7      |        |
| Spanish***   Valenc   | ia**   Sma | ll Seeded Ru | Inner <sup>*1.7</sup> |          |                         |                         |                   |          |        |
| AT9899 (S)*           | 4122bc     | 110          | 68b                   | 51de     | 53i                     | 27b                     | 19c               | 70d      | 981    |
| OLé***                | 3992c      | 106          | 64d                   | 54d      | 74c                     | 17e                     | 8f                | 67g      | 894    |
| Schubert***           | 3921cd     | 104          | 64d                   | 47f      | 47j                     | 28b                     | 25b               | 67g      | 851    |
| Span17 (S)*           | 4278bc     | 114          | 72a                   | 56c      | 66e                     | 25c                     | 16d               | 74b      | 1078   |
| TamVal OL14**         | 3071e      | 82           | 62e                   | 54d      | 54hi                    | 20d                     | 25b               | 65h      | 904    |
| ARSOK S95-1 (S)*      | 4232bc     | 112          | 68b                   | 59b      | 72d                     | 11h                     | 15d               | 71c      | 1007   |
| ARSOK S104-2E***      | 3819bc     | 102          | 67b                   | 53c      | 76d                     | 17e                     | 6g                | 69e      | 896    |
| ARSOK S104-3E***      | 4122c      | 110          | 65c                   | 51d      | 72d                     | 20d                     | 5h                | 68f      | 895    |
| ARSOK S105-3E***      | 3996c      | 107          | 64d                   | 53cd     | 72d                     | 14g                     | 14b               | 67g      | 895    |
| ARSOK S105-4E***      | 3894d      | 104          | 65c                   | 55cd     | 79c                     | 16f                     | 3i                | 68f      | 886    |
| ARSOK S1071L (S)*     | 4394ab     | 117          | 72a                   | 59b      | 87b                     | 8i                      | 3i                | 75a      | 1107   |
| NM310**               | 2680g      | 72           | 64d                   | 47f      | 55gh                    | 28b                     | 20c               | 67g      | 814    |
| IPG 1288 (V)*         | 4592a      | 123          | 72a                   | 63a      | 91a                     | 8i                      | 1j                | 74b      | 1396   |
| NMKC5**               | 2776g      | 74           | 64d                   | 54d      | 56g                     | 25c                     | 28a               | 67g      | 844    |
| NMM6**                | 2584g      | 69           | 64d                   | 50e      | 60f                     | 25c                     | 13e               | 67g      | 786    |
| NMPR25**              | 3490e      | 93           | 64d                   | 47f      | 38k                     | 31a                     | 20c               | 68f      | 1060   |
| Mean                  | 3748       |              | 66                    | 53       | 66                      | 20                      | 14                | 69       |        |
| Standard Error        | 172        |              | 0.8                   | 1.4      | 2.2                     | 1                       | 1.3               | 0.6      |        |
| Virginia <sup>1</sup> | 1          | 1            | 1                     | 1        | 1                       | 1                       | 1                 | r        | 1      |
| Bailey II             | 2748c      | 89           | 68c                   | 95b      | 46bc                    | 12cd                    | 26c               | 70c      | 654    |
| Comrade               | 3479a      | 113          | 70a                   | 106a     | 44c                     | 11d                     | 32b               | 71b      | 852    |
| Emery                 | 3465a      | 113          | 67d                   | 93bc     | 48ab                    | 11d                     | 21d               | 69d      | 813    |
| ARSOK V98             | 2603c      | 85           | 66e                   | 94bc     | 40d                     | 18a                     | 30b               | 70c      | 601    |
| ARSOK V99             | 3188b      | 104          | 69b                   | 92bcd    | 50a                     | 13c                     | 30b               | 72a      | 770    |
| ARSOK V102-5          | 2786c      | 90           | 66e                   | 91cd     | 40d                     | 16b                     | 40a               | 68e      | 644    |
| ARSOK V103-1          | 3538a      | 115          | 63f                   | 94bc     | 45c                     | 13c                     | 30b               | 69d      | 780    |
| ARSOK V103-3          | 2825c      | 92           | 63f                   | 90d      | 38d                     | 17a                     | 40a               | 67f      | 623    |




| Mean                                                                                                   | 3079                                                                                                                                                | 67                                                                                                                  | 94                                              | 44                                             | 14                                        | 31                               | 69                 |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------|--------------------|--|
| Standard Error                                                                                         | 246                                                                                                                                                 | 0.8                                                                                                                 | 3                                               | 2                                              | 1.2                                       | 2                                | 0.8                |  |
| MED = % Kernels rid<br>grade screen (16/64<br><sup>5</sup> Calculated based on<br>\$950, Valencia). EL | of 100 sound mature<br>ing a 21.5/64" X 1" slo<br>ding a 18/64" but fallin<br>4" for runner and Spa<br>n peanut market-type<br>K bonus not added fo | kernels.<br>otted screen for Virgin<br>ng through a 21.5/64"<br>nish, and 15/64 for Vir<br>e contract price per tou | or 21/64" sc<br>ginia) but fal<br>n 2023 (\$675 | reen; No.1 =<br>Iling throug<br>5, runners; \$ | * % Kernels<br>9h a 18/64'<br>\$700, Spar | s riding a n<br>,<br>nish and Vi | ninimum<br>rginia; |  |



|                        | Yield        | % of Trial | Grade <sup>2</sup> | SMK/100 <sup>3</sup> | ELK⁴      | <b>MED</b> <sup>4</sup> | No.14     | Shelling  | Value⁵ |
|------------------------|--------------|------------|--------------------|----------------------|-----------|-------------------------|-----------|-----------|--------|
| Entry                  | (lb/A)       | Average    | (%TSMK)            | (g)                  |           |                         | %         |           | (\$/A) |
| Runner <sup>1</sup>    |              |            |                    |                      |           |                         |           |           |        |
| ACI 080                | 6669c        | 102        | 73a                | 62e                  | 34cd      | 37a                     | 24cd      | 75a       | 1,643  |
| ACI 476                | 6822c        | 104        | 71b                | 61e                  | 48a       | 29c                     | 22d       | 73c       | 1,635  |
| ACI 509                | 5044e        | 77         | 71b                | 58f                  | 36c       | 35b                     | 24cd      | 74b       | 1,209  |
| ACI 3321               | 6947abc      | 106        | 72ab               | 66c                  | 41b       | 29c                     | 29b       | 75a       | 1,688  |
| Lariat                 | 7275a        | 111        | 72ab               | 68b                  | 44b       | 27d                     | 25c       | 75a       | 1,768  |
| ARSOK R95-1            | 5667d        | 87         | 70c                | 67bc                 | 32d       | 30c                     | 35a       | 72d       | 1,339  |
| ARSOK R106-9L          | 6869b        | 105        | 72ab               | 64d                  | 45a       | 23e                     | 25c       | 75a       | 1,669  |
| ARSOK R109-1L          | 7088ab       | 108        | 73a                | 70a                  | 42ab      | 27d                     | 23cd      | 75a       | 1,746  |
| Mean<br>Standard Error | 6548<br>371  |            | 72<br>1.3          | 65<br>1.8            | 40<br>3   | 30<br>1.6               | 26<br>2.5 | 74<br>0.8 |        |
| Spanish***   Valenc    | ia**   Small | Seeded Ru  |                    |                      |           |                         |           |           | L      |
| AT9899 (S)*            | 5558bc       | 111        | 66b                | 48bc                 | 58f       | 23cd                    | 21b       | 69b       | 1,284  |
| OLé***                 | 4890c        | 98         | 64c                | 51b                  | 77bc      | 16f                     | 5e        | 68b       | 1,096  |
| Schubert***            | 3455f        | 69         | 59ef               | 30d                  | 46h       | 29a                     | 23ab      | 64d       | 713    |
| Span17 (S)*            | 6568a        | 131        | 71a                | 52b                  | 73cd      | 20e                     | 5e        | 73a       | 1,632  |
| TamVal OL14**          | 4689de       | 94         | 62d                | 53b                  | 53g       | 23cd                    | 22ab      | 66c       | 1,381  |
| ARSOK S95-1 (S)*       | 5456bc       | 109        | 64c                | 59a                  | 69d       | 10g                     | 15c       | 68b       | 1,222  |
| ARSOK S104-2E***       | 5273cd       | 105        | 65b                | 46bc                 | 66d       | 25bc                    | 6d        | 68b       | 1,200  |
| ARSOK S104-3E***       | 5591b        | 112        | 63cd               | 47bc                 | 64e       | 20e                     | 10d       | 66c       | 1,233  |
| ARSOK S105-3E***       | 5057cd       | 101        | 63cd               | 48bc                 | 73cd      | 17f                     | 8de       | 67bc      | 1,115  |
| ARSOK S105-4E***       | 4946cd       | 99         | 61de               | 50b                  | 74c       | 15f                     | 8de       | 66c       | 1,056  |
| ARSOK S1071L (S)*      | 5953b        | 119        | 69a                | 58a                  | 80b       | 11g                     | 6e        | 72a       | 1,438  |
| NM310**                | 3843ef       | 77         | 65bc               | 43c                  | 47h       | 26b                     | 23ab      | 69b       | 1,187  |
| IPG 1288 (V)*          | 5774bc       | 115        | 71a                | 60a                  | 94a       | 5h                      | Of        | 73a       | 1,947  |
| NMKC5**                | 4330e        | 87         | 60e                | 48bc                 | 40i       | 22de                    | 21b       | 65cd      | 1,234  |
| NMM6**                 | 4128e        | 82         | 61de               | 47bc                 | 49gh      | 21de                    | 25a       | 66c       | 1,196  |
| NMPR25**               | 4569de       | 91         | 63cd               | 45c                  | 38i       | 26b                     | 20b       | 68b       | 1,367  |
| Mean<br>Standard Error | 5005<br>562  |            | 64<br>1.4          | 49<br>4              | 63<br>4   | 19<br>2                 | 14<br>3   | 68<br>1.1 |        |
| Virginia <sup>1</sup>  |              |            |                    |                      |           |                         |           |           |        |
| Bailey II              | 6908b        | 103        | 68b                | 89                   | 48a       | 37b                     | 11d       | 69c       | 1,644  |
| Comrade                | 7703a        | 114        | 70a                | 108                  | 46b       | 38ab                    | 10d       | 73a       | 1,887  |
| Emery                  | 7368ab       | 109        | 69ab               | 90                   | 48a       | 37b                     | 14c       | 71b       | 1,779  |
| ARSOK V98              | 5794c        | 86         | 65c                | 87                   | 39e       | 40a                     | 18b       | 67e       | 1,318  |
| ARSOK V99              | 6515b        | 97         | 68b                | 87                   | 48a       | 31c                     | 17b       | 69c       | 1,551  |
| ARSOK V102-5           | 5733c        | 85         | 68b                | 82                   | 43c       | 25d                     | 21a       | 69c       | 1,364  |
| ARSOK V103-1           | 6812b        | 101        | 68b                | 81                   | 45b       | 28cd                    | 18b       | 69c       | 1,621  |
| ARSOK V103-3           | 6815b        | 101        | 66c                | 80                   | 41d       | 30c                     | 21a       | 68d       | 1,574  |
| Mean<br>Standard Error | 6706<br>538  |            | 68<br>1            | 88<br>3              | 45<br>1.9 | 33<br>2.4               | 16<br>1.5 | 69<br>0.9 |        |

#### Table 2. Agronomic and shelling characteristics for entries in the 2023 Oklahoma Peanut Variety Trial. Location: Shantz Farms in Hydro.<sup>6</sup>



<sup>1</sup> Market Type.

- <sup>2</sup> % TSMK = Percent total sound mature kernels.
- <sup>3</sup> SMK/100 = Weight of 100 sound mature kernels.
- <sup>4</sup> ELK = % Kernels riding a 21.5/64" X 1" slotted screen for Virginia and 21/64" X 3/4" screen for runner and Spanish; MED = % Kernels riding a 18/64" but falling through a 21.5/64" or 21/64" screen; No.1 = % Kernels riding a minimum grade screen (16/64" for runner and Spanish, and 15/64 for Virginia) but falling through a 18/64"
- <sup>5</sup> Calculated based on peanut market-type contract price per ton 2023 (\$675, runners; \$700, Spanish and Virginia; \$950, Valencia). ELK bonus not added for Virginias.
- <sup>6</sup> Values within the same column followed by the same letter are not significantly different at P = .05. ns = no significant differences.
- <sup>7</sup> Small seeded runners marketed as Spanish (S) or Valencia (V)



|                        | Yield            | % of Trial   | Grade <sup>2</sup>    | SMK/100 <sup>3</sup> | ELK⁴      | MED <sup>4</sup> | No.1⁴          | Shelling  | Value⁵ |
|------------------------|------------------|--------------|-----------------------|----------------------|-----------|------------------|----------------|-----------|--------|
| Entry                  | (lb/A)           | Average      | (%TSMK)               | (g)                  |           |                  | %              |           | (\$/A) |
| Runner <sup>1</sup>    |                  |              |                       |                      |           |                  |                |           |        |
| ACI 080                | 4758d            | 92           | 71c                   | 55d                  | 10c       | 36bc             | 7c             | 68c       | 1,140  |
| ACI 476                | 5049c            | 98           | 72bc                  | 62c                  | 32a       | 35c              | 23a            | 71b       | 1,227  |
| ACI 509                | 5103c            | 99           | 74a                   | 52e                  | 19b       | 43a              | 11b            | 74a       | 1,274  |
| ACI 3321               | 5661a            | 109          | 73ab                  | 65b                  | 29a       | 40ab             | 22a            | 75a       | 1,394  |
| Lariat                 | 5318b            | 102          | 74a                   | 69a                  | 29a       | 34c              | 22a            | 74a       | 1,328  |
| Mean<br>Standard Error | 5178<br>200      |              | 73<br>1.3             | 60<br>1.6            | 24<br>4   | 38<br>4.5        | 17<br>3        | 72<br>2.5 |        |
| Spanish***   Valenc    | ia**   Sma       | ll Seeded Ru | Inner <sup>*1.7</sup> |                      |           |                  |                |           |        |
| AT9899 (S)*            | 4972b            | 109          | 68b                   | 50e                  | 35fg      | 31bc             | 20a            | 71c       | 1,183  |
| OLé***                 | 5300bc           | 117          | 67bc                  | 56c                  | 60d       | 20g              | 17bc           | 70cd      | 1,243  |
| Schubert***            | 4869c            | 107          | 62e                   | 44g                  | 21i       | 31bc             | 11e            | 64f       | 1,057  |
| Span17 (S)*            | 5813a            | 128          | 72a                   | 56c                  | 62d       | 26e              | 10e            | 74b       | 1,465  |
| TamVal OL14**          | 4145d            | 91           | 64d                   | 49e                  | 37f       | 28d              | 20a            | 67e       | 1,260  |
| ARSOK S95-1 (S)*       | 4573bcd          | 101          | 68b                   | 63a                  | 68c       | 15h              | 15cd           | 71c       | 1,088  |
| ARSOK S104-2E***       | 5348b            | 118          | 68b                   | 52d                  | 63d       | 24f              | 10e            | 69d       | 1,273  |
| ARSOK S104-3E***       | 4930b            | 109          | 62e                   | 49e                  | 52e       | 26e              | 19ab           | 65f       | 1,070  |
| ARSOK S105-3E***       | 4864c            | 107          | 66cd                  | 53d                  | 70c       | 20g              | 8f             | 67e       | 1,124  |
| ARSOK S105-4E***       | 3575e            | 79           | 62e                   | 49e                  | 61d       | 20g              | 15cd           | 65f       | 776    |
| ARSOK S1071L (S)*      | 5868a            | 129          | 72a                   | 60b                  | 80b       | 11i              | 6g             | 74b       | 1,479  |
| NM310**                | 2645f            | 58           | 64d                   | 46f                  | 28gh      | 30c              | 17bc           | 68e       | 804    |
| IPG 1288 (V)*          | 4887c            | 108          | 72a                   | 61b                  | 89a       | 9j               | Oh             | 75a       | 1,671  |
| NMKC5**                | 3332e            | 73           | 66cd                  | 47f                  | 31g       | 32b              | 17bc           | 69de      | 1,045  |
| NMM6**                 | 3361e            | 74           | 65d                   | 45g                  | 26h       | 31bc             | 13d            | 69de      | 1,038  |
| NMPR25**               | 4179d            | 92           | 66cd                  | 47f                  | 26h       | 35a              | 13d            | 70cd      | 1,310  |
| Mean<br>Standard Error | 4541<br>445      |              | 67<br>1.3             | 52<br>1.1            | 51<br>4   | 24<br>1.4        | 13<br>2.4      | 69<br>0.8 |        |
| Virginia <sup>1</sup>  |                  |              |                       |                      |           |                  |                |           |        |
| Bailey II              | 5312             | 101          | 69a                   | 90b                  | 47a       | 14b              | 32             | 71a       | 1,283  |
| Comrade                | 5308             | 101          | 69a                   | 94a                  | 32b       | 23a              | 35             | 71a       | 1,282  |
| Emery                  | 5161             | 98           | 67b                   | 79c                  | 36b       | 24a              | 32             | 69b       | 1,210  |
| Mean<br>Standard Error | 5260<br>435 (ns) |              | 68<br>1.7             | 88<br>3.8            | 38<br>4.1 | 20<br>1.8        | 33<br>4.3 (ns) | 70<br>1.4 |        |

Table 3. Agronomic and shelling characteristics for entries in the 2023 Oklahoma Peanut Variety Trial. Location: White Farms in Davidson.<sup>6</sup>

<sup>1</sup> Market Type.

<sup>2</sup> % TSMK = Percent total sound mature kernels.

<sup>3</sup> SMK/100 = Weight of 100 sound mature kernels.

<sup>4</sup> ELK = % Kernels riding a 21.5/64" X 1" slotted screen for Virginia and 21/64" X 3/4" screen for runner and Spanish; MED = % Kernels riding a 18/64" but falling through a 21.5/64" or 21/64" screen; No.1 = % Kernels riding a minimum grade screen (16/64" for runner and Spanish, and 15/64 for Virginia) but falling through a 18/64"

<sup>5</sup> Calculated based on peanut market-type contract price per ton 2023 (\$675, runners; \$700, Spanish and Virginia; \$950, Valencia). ELK bonus not added for Virginias.

<sup>6</sup> Values within the same column followed by the same letter are not significantly different at P = .05. ns = no significant differences.



|                        | Yield            | % of Trial  | Grade <sup>2</sup>   | SMK/100 <sup>3</sup> | <b>ELK</b> ⁴ | MED <sup>4</sup> | No.1⁴     | Shelling  | Value⁵ |
|------------------------|------------------|-------------|----------------------|----------------------|--------------|------------------|-----------|-----------|--------|
| Entry                  | (lb/A)           | Average     | (%TSMK)              | (g)                  |              |                  | %         |           | (\$/A) |
| Runner <sup>1</sup>    |                  |             |                      |                      |              |                  |           |           |        |
| ACI 080                | 5437a            | 102         | 72c                  | 60d                  | 25c          | 37a              | 18b       | 74c       | 1,321  |
| ACI 476                | 5394a            | 101         | 72c                  | 63c                  | 41a          | 32b              | 29a       | 74c       | 1,311  |
| ACI 509                | 4636b            | 87          | 73b                  | 58e                  | 32b          | 38a              | 20b       | 75b       | 1,142  |
| ACI 3321               | 5761a            | 108         | 72c                  | 68b                  | 38a          | 32b              | 30a       | 75b       | 1,400  |
| Lariat                 | 5448a            | 102         | 74a                  | 70a                  | 41a          | 28c              | 31a       | 76a       | 1,361  |
| Mean<br>Standard Error | 5335<br>392      |             | 73<br>0.7            | 64<br>1.4            | 35<br>3.5    | 33<br>1.9        | 26<br>2.6 | 75<br>0.6 |        |
| Spanish***   Valenc    | ia**   Sma       | I Seeded Ru | nner* <sup>1.7</sup> |                      |              |                  |           |           |        |
| AT9899 (S)*            | 4891bc           | 110         | 67c                  | 50f                  | 49e          | 27bc             | 22c       | 70b       | 1,147  |
| OLé***                 | 4745c            | 106         | 65e                  | 54d                  | 70d          | 18f              | 10e       | 68d       | 1,079  |
| Schubert***            | 4082d            | 92          | 62h                  | 40j                  | 38g          | 30a              | 22c       | 65g       | 886    |
| Span17 (S)*            | 5453a            | 122         | 72a                  | 55d                  | 67d          | 24d              | 8ef       | 74a       | 1,374  |
| TamVal OL14**          | 3919d            | 88          | 62h                  | 51ef                 | 46ef         | 24d              | 26a       | 66f       | 1,154  |
| ARSOK S95-1 (S)*       | 4759c            | 107         | 66d                  | 64a                  | 69d          | 12g              | 7fg       | 70b       | 1,099  |
| ARSOK S104-2E***       | 4898bc           | 110         | 66d                  | 51ef                 | 69d          | 22e              | 8ef       | 69c       | 1,131  |
| ARSOK S104-3E***       | 4776c            | 107         | 63g                  | 49f                  | 62e          | 22e              | 10e       | 67e       | 1,053  |
| ARSOK S105-3E***       | 4642c            | 104         | 65e                  | 51ef                 | 74c          | 18f              | 5g        | 67e       | 1,056  |
| ARSOK S105-4E***       | 4642c            | 104         | 63g                  | 52e                  | 71c          | 17f              | 9ef       | 66f       | 1,024  |
| ARSOK S1071L (S)*      | 5373ab           | 120         | 71b                  | 59c                  | 83b          | 10h              | 3g        | 74a       | 1,335  |
| NM310**                | 3122f            | 70          | 64f                  | 45i                  | 43f          | 28b              | 23b       | 68d       | 949    |
| IPG 1288 (V)*          | 5115b            | 115         | 71b                  | 61b                  | 91a          | 8i               | Oh        | 74a       | 1,725  |
| NMKC5**                | 3509e            | 79          | 63g                  | 50g                  | 43f          | 26c              | 22c       | 67e       | 1,050  |
| NMM6**                 | 3375ef           | 76          | 64f                  | 47h                  | 44ef         | 27bc             | 23c       | 67e       | 1,026  |
| NMPR25**               | 4088d            | 92          | 64f                  | 46hi                 | 33h          | 31a              | 17d       | 67e       | 1,243  |
| Mean<br>Standard Error | 4462<br>310      |             | 66<br>0.8            | 52<br>1.6            | 60<br>3.4    | 22<br>1.3        | 13<br>2   | 69<br>0.6 |        |
| Virginia <sup>1</sup>  |                  |             |                      |                      |              |                  |           |           |        |
| Bailey II              | 4940             | 94          | 68b                  | 90                   | 47a          | 13c              | 36b       | 70b       | 1,176  |
| Comrade                | 5511             | 105         | 69a                  | 102                  | 40c          | 15b              | 40a       | 72a       | 1,331  |
| Emery                  | 5318             | 101         | 67c                  | 87                   | 44b          | 17a              | 37b       | 69c       | 1,247  |
| Mean<br>Standard Error | 5256<br>639 (ns) |             | 68<br>0.7            | 93<br>2.2            | 44<br>2.3    | 15<br>1.7        | 38<br>2.6 | 70<br>0.6 |        |

Table 4. Agronomic and shelling characteristics for entries averaged across all locations in the 2023 Oklahoma Peanut Variety Trial.<sup>6</sup>

<sup>1</sup> Market Type.

<sup>2</sup> % TSMK = Percent total sound mature kernels.

<sup>3</sup> SMK/100 = Weight of 100 sound mature kernels.

<sup>4</sup> ELK = % Kernels riding a 21.5/64" X 1" slotted screen for Virginia and 21/64" X 3/4" screen for runner and Spanish; MED = % Kernels riding a 18/64" but falling through a 21.5/64" or 21/64" screen; No.1 = % Kernels riding a minimum grade screen (16/64" for runner and Spanish, and 15/64 for Virginia) but falling through a 18/64"

 <sup>5</sup> Calculated based on peanut market-type contract price per ton 2023 (\$675, runners; \$700, Spanish and Virginia; \$950, Valencia). ELK bonus not added for Virginias.

<sup>6</sup> Values within the same column followed by the same letter are not significantly different at P = .05. ns = no significant differences.

|                        | Yield       | % of Trial    | Grade <sup>2</sup> | SMK/100 <sup>3</sup> | ELK⁴      | MED <sup>4</sup> | No.14          | Shelling  | Value⁵ |
|------------------------|-------------|---------------|--------------------|----------------------|-----------|------------------|----------------|-----------|--------|
| Entry                  | (lb/A)      | Average       | (%TSMK)            | (g)                  |           |                  | %              |           | (\$/A) |
| Runner <sup>1</sup>    |             |               |                    |                      |           |                  |                |           |        |
| ACI 080                | 5443a       | 110           | 70b                | 61c                  | 24d       | 39a              | 15b            | 71c       | 1,286  |
| ACI 476                | 5180ab      | 105           | 71b                | 60c                  | 35c       | 33b              | 19ab           | 72bc      | 1,241  |
| ACI 3321               | 5025ab      | 101           | 71b                | 67b                  | 34c       | 29cd             | 22a            | 73ab      | 1,204  |
| Lariat                 | 4666c       | 94            | 72a                | 74a                  | 38bc      | 29cd             | 22a            | 74a       | 1,134  |
| ARSOK R95-1            | 4490c       | 91            | 70b                | 68b                  | 49a       | 31bc             | 20ab           | 73ab      | 1,061  |
| ARSOK R106-9L          | 4797b       | 97            | 71b                | 68b                  | 42b       | 25e              | 17ab           | 74a       | 1,149  |
| ARSOK R109-1L          | 5063ab      | 102           | 71b                | 69b                  | 37c       | 28d              | 19ab           | 73ab      | 1,213  |
| Mean<br>Standard Error | 4952<br>433 |               | 71<br>1.5          | 67<br>3              | 37<br>4   | 31<br>2.1        | 19<br>6.2      | 73<br>1.4 |        |
| Spanish***   Valen     | cia**   Sma | all Seeded Ru | Inner*1.7          |                      |           |                  | -              |           |        |
| AT9899 (S)*            | 4838ab      | 107           | 59d                | 52d                  | 43b       | 17ab             | 16b            | 61c       | 999    |
| OLé***                 | 4638bc      | 103           | 66bc               | 54c                  | 65a       | 11c              | 22ab           | 68b       | 1,071  |
| Schubert***            | 4237d       | 94            | 64c                | 48f                  | 45b       | 20a              | 15b            | 67b       | 949    |
| Span17 (S)*            | 5164a       | 115           | 72a                | 55bc                 | 62a       | 16b              | 22ab           | 73a       | 1,301  |
| ARSOK S104-2E***       | 4427cd      | 98            | 67b                | 52d                  | 65a       | 13bc             | 23b            | 68b       | 1,038  |
| ARSOK S104-3E***       | 4294d       | 95            | 67b                | 50e                  | 60a       | 15b              | 21ab           | 68b       | 1,007  |
| ARSOK S105-3E***       | 4218d       | 94            | 65bc               | 53cd                 | 63a       | 11c              | 24a            | 67b       | 960    |
| ARSOK S105-4E***       | 4248d       | 94            | 67b                | 57a                  | 66a       | 11c              | 24a            | 68b       | 996    |
| Mean<br>Standard Error | 4508<br>328 |               | 66<br>2.1          | 53<br>1.3            | 59<br>5   | 14<br>3          | 21<br>8        | 68<br>2.2 |        |
| Virginia <sup>1</sup>  |             |               |                    |                      |           |                  |                |           |        |
| Comrade                | 4990a       | 112           | 70a                | 103a                 | 46a       | 13c              | 27             | 71a       | 1,223  |
| ARSOK V98              | 3978c       | 89            | 66b                | 91b                  | 39d       | 14c              | 22             | 69b       | 980    |
| ARSOK V99              | 4409bc      | 99            | 69a                | 82c                  | 44b       | 16b              | 27             | 71a       | 955    |
| ARSOK V103-1           | 4517bc      | 101           | 62c                | 93b                  | 42c       | 19a              | 24             | 67c       | 919    |
| ARSOK V103-3           | 4474bc      | 100           | 61c                | 92b                  | 40d       | 18a              | 22             | 66d       | 1,065  |
| Mean<br>Standard Error | 4474<br>602 |               | 66<br>1.5          | 92<br>2.9            | 42<br>1.8 | 16<br>1.7        | 24<br>9.7 (ns) | 69<br>0.5 |        |

Table 5. Two-year average (2022-2023) of agronomic and shelling characteristics for entries in the Oklahoma Peanut Variety Trial. Location: Caddo Research Station in Fort Cobb.<sup>6</sup>

<sup>1</sup> Market Type.

<sup>2</sup> % TSMK = Percent total sound mature kernels.

 $^{3}$  SMK/100 = Weight of 100 sound mature kernels.

<sup>4</sup> ELK = % Kernels riding a 21.5/64" X 1" slotted screen for Virginia and 21/64" X 3/4" screen for runner and Spanish; MED = % Kernels riding a 18/64" but falling through a 21.5/64" or 21/64" screen; No.1 = % Kernels riding a minimum grade screen (16/64" for runner and Spanish, and 15/64 for Virginia) but falling through a 18/64"

<sup>5</sup> Calculated based on peanut market-type contract price per ton 2023 (\$675, runners; \$700, Spanish and Virginia; \$950, Valencia). ELK bonus not added for Virginias.

<sup>6</sup> Values within the same column followed by the same letter are not significantly different at P = .05. ns = no significant differences.



|                        | Yield       | % of Trial   | Grade <sup>2</sup>    | SMK/100 <sup>3</sup> | <b>ELK</b> <sup>₄</sup> | MED <sup>4</sup> | No.1⁴     | Shelling         | Value⁵ |
|------------------------|-------------|--------------|-----------------------|----------------------|-------------------------|------------------|-----------|------------------|--------|
| Entry                  | (lb/A)      | Average      | (%TSMK)               | (g)                  |                         |                  | %         |                  | (\$/A) |
| Runner <sup>1</sup>    |             |              |                       |                      |                         |                  |           |                  |        |
| ACI 080                | 5949bc      | 98           | 72b                   | 58d                  | 16b                     | 39a              | 6c        | 72               | 1,446  |
| ACI 476                | 6240ab      | 102          | 72b                   | 62c                  | 32a                     | 35b              | 14a       | 72               | 1,516  |
| ACI 3321               | 5743c       | 94           | 74a                   | 66b                  | 34a                     | 34b              | 13b       | 73               | 1,434  |
| Lariat                 | 6452a       | 106          | 74a                   | 68a                  | 32a                     | 33b              | 13b       | 73               | 1,611  |
| Mean<br>Standard Error | 6096<br>484 |              | 73<br>1.3             | 64<br>1.5            | 29<br>3.5               | 35<br>3          | 12<br>4   | 72.5<br>1.3 (ns) |        |
| Spanish***   Valend    | cia**   Sma | all Seeded R | unner* <sup>1.7</sup> |                      |                         |                  |           |                  |        |
| AT9899 (S)*            | 6129ab      | 107          | 72a                   | 50d                  | 44e                     | 22a              | 13bc      | 74a              | 1,545  |
| OLé***                 | 6277a       | 109          | 69b                   | 55a                  | 57c                     | 14c              | 20a       | 71b              | 1,516  |
| Schubert***            | 5284b       | 92           | 65d                   | 47e                  | 33                      | 23a              | 9c        | 67d              | 1,202  |
| Span17 (S)*            | 6429a       | 112          | 73a                   | 54ab                 | 60ab                    | 16bc             | 19a       | 75a              | 1,643  |
| ARSOK S104-2E***       | 5688b       | 99           | 69b                   | 53bc                 | 59bc                    | 17b              | 19a       | 71b              | 1,374  |
| ARSOK S104-3E***       | 5728b       | 100          | 66cd                  | 50d                  | 51d                     | 17b              | 16ab      | 68cd             | 1,323  |
| ARSOK S105-3E***       | 5696b       | 99           | 67c                   | 52c                  | 63a                     | 13c              | 20a       | 69bc             | 1,336  |
| ARSOK S105-4E***       | 4715c       | 82           | 67c                   | 50d                  | 59bc                    | 13c              | 18ab      | 69bc             | 1,106  |
| Mean<br>Standard Error | 5743<br>469 |              | 69<br>1.5             | 51<br>1              | 53<br>3.4               | 17<br>3.8        | 17<br>6.3 | 71<br>1.2        |        |

Table 6. Two-year average (2022-2023) of agronomic and shelling characteristics for entries in the Oklahoma Peanut Variety Trial. Location: White Farms in Davidson.<sup>6</sup>

<sup>1</sup> Market Type.

<sup>2</sup> % TSMK = Percent total sound mature kernels.

<sup>3</sup> SMK/100 = Weight of 100 sound mature kernels.

<sup>4</sup> ELK = % Kernels riding a 21.5/64" X 1" slotted screen for Virginia and 21/64" X 3/4" screen for runner and Spanish; MED = % Kernels riding a 18/64" but falling through a 21.5/64" or 21/64" screen; No.1 = % Kernels riding a minimum grade screen (16/64" for runner and Spanish, and 15/64 for Virginia) but falling through a 18/64"

<sup>5</sup> Calculated based on peanut market-type contract price per ton 2023 (\$675, runners; \$700, Spanish and Virginia; \$950, Valencia). ELK bonus not added for Virginias.

<sup>6</sup> Values within the same column followed by the same letter are not significantly different at P = .05. ns = no significant differences.



|                        | Yield       | % of Trial    | Grade <sup>2</sup>    | SMK/100 <sup>3</sup> | <b>ELK</b> <sup>₄</sup> | MED <sup>4</sup> | No.14     | Shelling  | Value⁵ |
|------------------------|-------------|---------------|-----------------------|----------------------|-------------------------|------------------|-----------|-----------|--------|
| Entry                  | (lb/A)      | Average       | (%TSMK)               | (g)                  |                         |                  | %         |           | (\$/A) |
| Runner <sup>1</sup>    |             |               |                       |                      |                         |                  |           |           |        |
| ACI 080                | 5696        | 102           | 71b                   | 60c                  | 20c                     | 39a              | 11b       | 71c       | 1,196  |
| ACI 476                | 5710        | 102           | 71b                   | 61c                  | 34b                     | 34b              | 16a       | 72b       | 1,219  |
| ACI 3321               | 5384        | 96            | 72ab                  | 66b                  | 34b                     | 31c              | 18a       | 73a       | 1,244  |
| Lariat                 | 5559        | 99            | 73a                   | 71a                  | 35a                     | 31c              | 17a       | 73a       | 1,381  |
| Mean<br>Standard Error | 5587        |               | 72<br>1               | 65<br>1.5            | 31<br>2.8               | 34<br>1.7        | 16<br>3.6 | 72<br>0.9 |        |
| Spanish***   Valend    | cia**   Sma | all Seeded Ru | Inner <sup>*1.7</sup> |                      |                         |                  |           |           |        |
| AT9899 (S)*            | 5484a       | 107           | 65d                   | 51d                  | 43c                     | 19b              | 15b       | 67d       | 1,248  |
| OLé***                 | 5457a       | 106           | 67bc                  | 55a                  | 61a                     | 13d              | 21a       | 69bc      | 1,280  |
| Schubert***            | 4760bc      | 93            | 65d                   | 47f                  | 39d                     | 22a              | 12c       | 67d       | 1,083  |
| Span17 (S)*            | 5797a       | 113           | 72a                   | 55a                  | 61a                     | 16c              | 20a       | 74a       | 1,461  |
| ARSOK S104-2E***       | 5057b       | 99            | 68b                   | 52c                  | 62a                     | 15cd             | 21a       | 70b       | 1,204  |
| ARSOK S104-3E***       | 5011b       | 98            | 66cd                  | 50e                  | 55b                     | 16c              | 19ab      | 68cd      | 1,158  |
| ARSOK S105-3E***       | 4957b       | 97            | 66cd                  | 52c                  | 63a                     | 12e              | 22a       | 68cd      | 1,145  |
| ARSOK S105-4E***       | 4482c       | 87            | 67bc                  | 54b                  | 63a                     | 12e              | 21a       | 69bc      | 1,051  |
| Mean<br>Standard Error | 5126<br>356 |               | 67<br>1.4             | 52<br>0.9            | 56<br>3.1               | 16<br>2.4        | 19<br>4.8 | 69<br>1.4 |        |

Table 7. Two-year average (2022-2023) of agronomic and shelling characteristics for entries in the Oklahoma Peanut Variety Trials across all locations (Fort Cobb and Davidson).<sup>6</sup>

<sup>1</sup> Market Type.

<sup>2</sup> % TSMK = Percent total sound mature kernels.

<sup>3</sup> SMK/100 = Weight of 100 sound mature kernels.

<sup>4</sup> ELK = % Kernels riding a 21.5/64" X 1" slotted screen for Virginia and 21/64" X 3/4" screen for runner and Spanish; MED = % Kernels riding a 18/64" but falling through a 21.5/64" or 21/64" screen; No.1 = % Kernels riding a minimum grade screen (16/64" for runner and Spanish, and 15/64 for Virginia) but falling through a 18/64"

<sup>5</sup> Calculated based on peanut market-type contract price per ton 2023 (\$675, runners; \$700, Spanish and Virginia;

\$950, Valencia). ELK bonus not added for Virginias.

<sup>6</sup> Values within the same column followed by the same letter are not significantly different at P = .05. ns = no significant differences.

<sup>7</sup> Small seeded runners marketed as Spanish (S) or Valencia (V)

The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

The pesticide information presented in this publication was current with federal and state regulations at the time of printing. The user is responsible for determining that the intended use is consistent with the label of the product being used. Use pesticides safely. Read and follow label directions. The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

Oklahoma State University, as an equal opportunity employer, complies with all applicable federal and state laws regarding non-discrimination and affirmative action. Oklahoma State University is committed to a policy of equal opportunity for all individuals and does not discriminate based on race, religion, age, sex, color, national origin, marital status, sexual orientation, gender identity/expression, disability, or veteran status with regard to employment, educational programs and activities, and/or admissions. For more information, visit https://eeo.okstate. edu. This report of the Oklahoma Agricultural Experiment Station is printed and issued by Oklahoma State University as authorized by the Vice President for Agricultural Programs and has been prepared and distributed at a cost of \$3.89 per copy.





## Evaluation of Foliar Fungicides for Control of Early Leaf Spot in Oklahoma in 2023

Maira R. Duffeck, Luana Muller and Sebastian Espinosa Velasco, OSU Deparment of Entomology and Plant Pathology Rebecca S. Bennett and Kelly D. Chamberlin, USDA-Agricultural Research Service

### **Overview**

- Levels of early leaf spot were very low in the 2023 growing season.
- Early leaf spot was observed very early in the growing season in the lower canopy of all experimental plots. However, the high temperatures experienced in 2023 did not favor the development of the disease to the upper canopy, not even in the untreated check.
- No Sclerotinia blight or southern blight was observed in the plots in 2023.
- The reduced fungicide program with Lucento, applied 75 days after planting, resulted in the highest yield (5,612 pounds per acre) of all three experiments.

### **Methods for Conducting Field Experiments**

Three field trials were conducted at the Caddo Research Station near Fort Cobb to quantify the effect of foliar fungicide on early leaf spot (ELS) severity (%), defoliation (%) and yield (lbs/A). The soil is classified as a Binger fine sandy loam and was previously cropped with peanuts. Granular fertilizer at 11-52-0 lbs/A of NPK was incorporated into the soil before planting on May 8 with the same process conducted for the fertilizer 0-0-60 lbs/A of NPK on May 11. The herbicide Valor SX 51WDG at 2 oz/A was applied preemergence at peanut planting on May 17. The experimental design was a randomized complete block with four blocks separated by a 5-ft-wide fallow buffer. Each plot consisted of four 25-ft-long rows spaced 36" apart. The peanut cultivar Olé, a Spanish market type susceptible to ELS, was planted on May 17. Fungicides were broadcast through flat-fan nozzles (8002vk) spaced 18" apart with a CO2-pressurized wheelbarrow sprayer. The sprayer was calibrated to deliver 20 gal/A at 40 psi. All treatments were applied with Induce at 0.25% v/v.

Fungicide applications for experiments 1 and 2 (Tables 1 and 2) were conducted based on a 17-day calendar program. The fungicide sprays were conducted on July 13, July 31, Aug. 16, and Sept. 1 for experiment 1 and on July 13, July 31, Aug. 16, Sept. 1, and Sept. 18 for experiment 2. Fungicide applications for experiment 3 were conducted according to the recommendation of the decision support system called Leaf Spot Advisor, which runs on the Mesonet Oklahoma web page. Leaf Spot Advisor aims to help peanut growers make better



informed decisions regarding fungicide applications based on weather conditions experienced in the state. In experiment 3, fungicide applications were conducted on July 13, Aug. 16, and Sept. 18. All data were taken from the two center rows, including yield. ELS severity (% leaf with disease symptoms) and defoliation (%) were estimated for the whole plot on Sept. 30. The two center rows were dug and inverted on Oct. 6, windrowed for four days and harvested with a combine. Pods were dried and cleaned before taking weights (lbs/A). The data collected were subjected to mixed model analysis of variance, and means were separated by Fisher's Least Significant Difference Test, which was indicated by a significant (P = 0.05) treatment effect.

### **Summary of Field Conditions**

The rainfall during the cropping period (May 17 to Oct. 10) totaled 1.62" for May, 6.68" for June, 5.24" for July, 0.6" for August, 1.54" for September and 0.15" for October. Minimum, average and maximum air temperatures for May (17-31), June, July, August, September, October (1-10) were 59.2, 66, 70, 69, 64 and 53.2 °F; 68.5, 76.5, 81.3, 82.3, 75.5 and 66.9 °F; and 78.9, 88, 93, 96, 89 and 81.9 °F, respectively. The rainfall totals during the 2023 peanut season were above normal (30-year average) in June and July but below normal in August, September and October. The average daily temperatures were normal (30-year average) from May to October. The frequent rainfalls experienced in May, June and July favored the early development of early leaf spot (*Passalora arachidicola*) in all three experiments. The disease was noticed in all plots during the first fungicide application on July 13. However, the high temperatures experienced in July, August and September, combined with the below-average rainfalls in August and September, stopped the development of the disease, which did not progress to the upper canopy of the peanut plants, not even in the untreated plots. No southern blight (*Agroathelia rolfsii*) or Sclerotinia blight (*Sclerotinia minor*) were observed in the plots during the experiments.

### **Results from Experiment 1 – Lucento Fungicide Program**

All treatments reduced the severity of early leaf spot (F = 20.2; P < 0.01) and plant defoliation (F = 20.1; P < 0.01) compared to the untreated check (Table 1). All the treatments with Lucento provided the best disease control compared with others without Lucento. Interestingly, the reduced fungicide program with Lucento applied 75 days after planting resulted in the highest yield (5,612 lbs/A). The effect of the fungicide treatments on yield was statistically significantly different from the untreated control (F = 2.2; P = 0.049). The yield increase in the plots compared with the untreated check ranged from 94 to 653 lbs/A. None of the treatments caused phytotoxicity symptoms.

### Results from Experiment 2 – Priaxor and Provysol Fungicide Program

All treatments reduced early leaf spot severity (F = 24.6; P < 0.01) and plant defoliation (F = 20.4; P < 0.01) compared to the untreated check. However, the effect of the fungicide treatments on yield was not significantly different from the untreated control (F = 2.2; P = 0.13). All treatments increased yield (290.4 to 406.5 lbs/A) compared to the untreated check. None of the treatments caused phytotoxicity symptoms.



### Results from Experiment 3 – Fungicide Sprays Based on the Leaf Spot Advisor (Mesonet)

Results shown in Table 3 indicate that all treatments reduced early leaf spot (F = 24.6; P < 0.01) and plant defoliation (F = 20.4; P < 0.01) compared to the untreated check. However, the effect of the fungicide treatments on yield was not significantly different from the untreated control (F = 2.2; P = 0.13). The lowest disease severity and defoliation levels were observed in treatment 4 (Miravis + Elatus as the second application). In contrast, the highest yield return was observed in treatment 5 (Topguard as the second application). All treatments increased yield by 7.2 to 486.4 lbs/A compared to the untreated check. None of the treatments caused phytotoxicity symptoms.

### Acknowledgments

Field trials were conducted during the 2023 peanut growing season to evaluate the efficacy of different fungicide programs to manage leaf spot diseases on Spanish market-type peanuts (cultivar OLé). The trials were possible because of the excellent cooperation established with Bobby Weidenmaier and the Caddo Research Station staff. A special thanks to the Oklahoma Peanut Commission and the National Peanut Board for funding to support this research. FMC and BASF provided additional funding for the trials.



#### Table 1. Evaluation of Lucento fungicide programs for control of early leaf spot in Oklahoma in 2023

| Treatment <sup>1</sup> : Product, rate, timing <sup>2</sup>                                         | Early leaf spot (%)<br>30 Sep <sup>3</sup> | Defoliation (%)<br>30 Sep⁴ | Yield (lbs./A)⁵ |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|-----------------|
| Untreated check                                                                                     | 35.00 a                                    | 31.20 a                    | 4,959 d         |
| Lucento 5.5 fl. oz. (2, 4)<br>Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (3)                            | 3.75 bc                                    | 3.25 c                     | 5,612 a         |
| Adastrio 8 fl. oz. (2, 4)<br>Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (3)                             | 9.00 b                                     | 11.00 b                    | 5,372 abc       |
| Lucento 5.5 fl. oz. (2, 4)<br>Headline 12 fl. oz. (3)                                               | 3.00 bc                                    | 3.50 c                     | 5,300 abcd      |
| Lucento 5.5 fl. oz. (2, 4)<br>Abound18.5 fl. oz.                                                    | 2.50 bc                                    | 2.75 c                     | 5,053 cd        |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (1, 3)<br>Lucento 5.5 fl. oz. (2, 4)                         | 1.50 c                                     | 1.37 c                     | 5,467 ab        |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (1)<br>Lucento 5.5 fl. oz. (2, 4)<br>Headline 12 fl. oz. (3) | 1.50 c                                     | 1.75 c                     | 5,351 abcd      |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (1)<br>Lucento 5.5 fl. oz. (2, 4)<br>Abound 18.5 fl. oz. (3) | 1.75 c                                     | 2.00 c                     | 5,460 ab        |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (2)<br>Abound 18.5 fl. oz. (3, 4)                            | 8.25 bc                                    | 4.75 bc                    | 5,184 bcd       |
| LSD (P = 0.05) <sup>6</sup>                                                                         | 6.97                                       | 6.25                       | 398.47          |

<sup>2</sup> Timing corresponds to the spray dates of 1=13 Jul, 2–31 Jul, 3=16 Aug, 4=1 Sep.

<sup>3,4,5</sup> Values in a column followed by the same letter are not significant according to Fisher's least significant difference test at P=0.05.

<sup>6</sup> Least significant difference.

#### Table 2. Efficacy of Priaxor and Provysol fungicides to manage early leaf spot in peanuts in 2023

| Treatment <sup>1</sup> : Product, rate, timing <sup>2</sup>                                          | Early leaf spot (%)<br>30 Sep <sup>3</sup> | Defoliation (%)<br>30 Sep⁴ | Yield (lbs./A)⁵ |
|------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|-----------------|
| Untreated check                                                                                      | 35.0 a                                     | 31.2 a                     | 4,959           |
| Bravo 24 fl. oz. (1, 5)<br>Priaxor 8 fl. oz. (2, 4)<br>Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (3)    | 4.0 b                                      | 3.2 b                      | 5,365           |
| ABravo 24 fl. oz. (1, 5)<br>Priaxor 8 fl. oz. (2, 4)<br>Folicur 7.2 fl. oz. + Provysol 3 fl. oz. (3) | 2.7 b                                      | 3.7 b                      | 5,416           |
| Bravo 24 fl. oz. (1, 5)<br>Priaxor 8 fl. oz. (2, 4)<br>Folicur 7.2 fl. oz. + Provysol 5 fl. oz. (3)  | 3.7 b                                      | 2.7 b                      | 5,249           |
| LSD (P = 0.05) <sup>6</sup>                                                                          | 8.0                                        | 7.9                        | ns              |

<sup>1</sup> Treatments 1 – 5 were applied with Induce @ 0.25% v/v.

<sup>2</sup> Timing corresponds to the spray dates of 1 = 13 Jul, 2–31 Jul, 3 = 16 Aug, 4 = 1 Sep, 5 = 18 Sep.

<sup>3.4,5</sup> Values in a column followed by the same letter are not significant according to Fisher's least significant difference test at P = 0.05.

<sup>6</sup> Least significant difference.

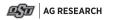



Table 3. Evaluation of foliar fungicides for control of early leaf spot in Oklahoma in 2023 based on the Leaf Spot Advisor (Mesonet)

| Treatment <sup>1</sup> : Product, rate, timing <sup>2</sup>                                                                             | Early leaf spot (%)<br>30 Sep <sup>3</sup> | Defoliation (%)<br>30 Sep⁴ | Yield (lbs./A)⁵ |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|-----------------|
| Untreated check                                                                                                                         | 35.00 a                                    | 31.25 a                    | 4,959           |
| Bravo 24 fl. oz. (1)<br>Elatus 7.3 fl. oz. (2)<br>Bravo 6F 24 fl. oz. + Folicur 7.2 fl. oz. (3)                                         | 9.25 cd                                    | 9.75 b                     | 4,966           |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (1, 3)<br>Headline 12 fl. oz. (2)                                                                | 4.50 de                                    | 6.75 bc                    | 5,278           |
| Bravo 24 fl. oz. + Alto 5.5 fl. oz (1)<br>Elatus 7.3 fl. oz. + Miravis 3.4 fl. oz. (2)<br>Bravo 6F 24 fl. oz. + Folicur 7.2 fl. oz. (3) | 2.00 e                                     | 1.25 c                     | 5,191           |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (1, 3)<br>Topguard 8 fl. oz. (2)                                                                 | 8.50 cde                                   | 7.75 bc                    | 5,445           |
| Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (1, 3)<br>Approach Prima 6.8 fl. oz. (2)                                                         | 11.25 bc                                   | 10.00 b                    | 5,191           |
| Bravo 24 fl. oz. (1)<br>Folicur 9 fl. oz. (2)<br>Bravo 24 fl. oz. + Folicur 7.2 fl. oz. (3)                                             | 16.25 b                                    | 13.50 b                    | 5,104           |
| LSD (P = $0.05)^6$                                                                                                                      | 6.56                                       | 6.90                       | ns              |

<sup>1</sup> Treatments 1 - 7 were applied with Induce @ 0.25% v/v.

<sup>2</sup> Timing corresponds to the spray dates of 1–13 Jul, 2 = 16 Aug, 3 = 18 Sep.

 $^{3.4.5}$  Values in a column followed by the same letter are not significant according to Fisher's least significant difference test at P = 0.05.

<sup>6</sup> Least significant difference.

The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

The pesticide information presented in this publication was current with federal and state regulations at the time of printing. The user is responsible for determining that the intended use is consistent with the label of the product being used. Use pesticides safely. Read and follow label directions. The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

Oklahoma State University, as an equal opportunity employer, complies with all applicable federal and state laws regarding non-discrimination and affirmative action. Oklahoma State University is committed to a policy of equal opportunity for all individuals and does not discriminate based on race, religion, age, sex, color, national origin, marital status, sexual orientation, gender identity/expression, disability, or veteran status with regard to employment, educational programs and activities, and/or admissions. For more information, visit https://eeo.okstate. edu. This report of the Oklahoma Agricultural Experiment Station is printed and issued by Oklahoma State University as authorized by the Vice President for Agricultural Programs and has been prepared and distributed at a cost of \$3.89 per copy.



